Advanced Search

Show simple item record

dc.contributor.authorAyvaz, Hüseyin
dc.contributor.authorTemizkan, Rıza
dc.contributor.authorKaya, Burcu
dc.contributor.authorSalman, Merve
dc.contributor.authorMenevşeoğlu, Ahmed
dc.contributor.authorAyvaz, Zayde
dc.contributor.authorGüneş, Nurhan
dc.contributor.authorDoğan, Muhammed Ali
dc.contributor.authorMortaş, Mustafa
dc.date.accessioned2024-02-21T06:44:19Z
dc.date.available2024-02-21T06:44:19Z
dc.date.issued2024en_US
dc.identifier.citationAyvaz, H., Temizkan, R., Kaya, B., Salman, M., Menevşeoğlu, A., Ayvaz, Z., ... Mortaş, M., (2024) Machine Learning-Assisted Near- and Mid-Infrared spectroscopy for rapid discrimination of wild and farmed Mediterranean mussels (Mytilus galloprovincialis). Microchemical Journal, 196. doi: 10.1016/j.microc.2023.109669en_US
dc.identifier.issn0026-265X / 1095-9149
dc.identifier.urihttps://doi.org/10.1016/j.microc.2023.109669
dc.identifier.urihttps://hdl.handle.net/20.500.12428/5719
dc.description.abstractThe objective of this study was to investigate the ability to discriminate between wild and farmed Mediterranean mussels (Mytilus galloprovincialis) using machine learning-assisted near-infrared (NIR) and mid-infrared (MIR) spectroscopy. Mussels are of significant global importance in aquaculture due to their nutritional characteristics, encompassing a rich source of protein, essential fatty acids, various vitamins, and abundant minerals. Additionally, their ease of farming adds to their value as a desirable aquaculture species. The mussels' capacity to reflect environmental quality attributes makes them valuable as biomonitoring agents. However, differences in nutritional composition may arise between wild mussels harvested from natural marine hard-bottoms and those farmed in open artificial systems in the sea. In this study aimed at distinguishing between the two types of mussels, the classification models were created, and the most accurate results were achieved using the FT-MIR spectral data extracted from the interior part of the mussels, while the performance of FT-MIR data obtained from the mussels' shells was slightly lower, with the accuracy of 92% and R2 of 0.87. Still, the accuracies of all the classification models were over 90%. The Ensemble model, trained using FT-MIR spectra from the interior part of the mussel, achieved an accuracy of 98.4%, surpassing the performance of other variable sets. In both NIR and MIR models, spectra from the mussels' interior provide better discrimination than spectra from the outer shell.en_US
dc.language.isoengen_US
dc.publisherElsevier Inc.en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectChemometricsen_US
dc.subjectDiscriminationen_US
dc.subjectInfrared spectroscopyen_US
dc.subjectMachine learningen_US
dc.subjectMusselsen_US
dc.titleMachine Learning-Assisted Near- and Mid-Infrared spectroscopy for rapid discrimination of wild and farmed Mediterranean mussels (Mytilus galloprovincialis)en_US
dc.typearticleen_US
dc.authorid0000-0001-9705-6921en_US
dc.authorid0000-0001-5746-8921en_US
dc.authorid0000-0003-1755-7705en_US
dc.authorid0000-0003-3938-0613en_US
dc.authorid0000-0002-8102-0577en_US
dc.authorid-en_US
dc.relation.ispartofMicrochemical Journalen_US
dc.departmentEnstitüler, Lisansüstü Eğitim Enstitüsü, Gıda Mühendisliği Ana Bilim Dalıen_US
dc.departmentFakülteler, Deniz Bilimleri ve Teknolojisi Fakültesi, Su Ürünleri Mühendisliği Bölümüen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Gıda Mühendisliği Bölümüen_US
dc.identifier.volume196en_US
dc.institutionauthorAyvaz, Hüseyin
dc.institutionauthorTemizkan, Rıza
dc.institutionauthorKaya, Burcu
dc.institutionauthorSalman, Merve
dc.institutionauthorAyvaz, Zayde
dc.institutionauthorDoğan, Muhammed Ali
dc.identifier.doi10.1016/j.microc.2023.109669en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorwosid-en_US
dc.authorwosidH-8794-2019en_US
dc.authorwosid-en_US
dc.authorwosid-en_US
dc.authorwosidE-4827-2012en_US
dc.authorwosid-en_US
dc.authorscopusid54792612800en_US
dc.authorscopusid55389584500en_US
dc.authorscopusid57372837700en_US
dc.authorscopusid58722738000en_US
dc.authorscopusid57191202269en_US
dc.authorscopusid58723792900en_US
dc.identifier.wosqualityQ1en_US
dc.identifier.wosWOS:001121407600001en_US
dc.identifier.scopus2-s2.0-85177858688en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record