Advanced Search

Show simple item record

dc.contributor.authorIşık, Melis
dc.contributor.authorKarakaya, Ece
dc.contributor.authorArslan, Tugba Sezgin
dc.contributor.authorAtila, Deniz
dc.contributor.authorErdoğan, Yaşar Kemal
dc.contributor.authorArslan, Yavuz Emre
dc.date.accessioned2023-08-01T06:26:35Z
dc.date.available2023-08-01T06:26:35Z
dc.date.issued2023en_US
dc.identifier.citationIşık, M., Karakaya, E., Arslan, T. S., Atila, D., Erdoğan, Y. K., Arslan, Y. E., … Derkus, B. (2023). 3D Printing of Extracellular Matrix‐Based Multicomponent, All‐Natural, Highly Elastic, and Functional Materials toward Vascular Tissue Engineering. Advanced Healthcare Materials. https://doi.org/10.1002/adhm.202203044en_US
dc.identifier.issn2192-2640 / 2192-2659
dc.identifier.urihttps://doi.org/10.1002/adhm.202203044
dc.identifier.urihttps://hdl.handle.net/20.500.12428/4463
dc.description.abstract3D printing offers an exciting opportunity to fabricate biological constructs with specific geometries, clinically relevant sizes, and functions for biomedical applications. However, successful application of 3D printing is limited by the narrow range of printable and bio-instructive materials. Multicomponent hydrogel bioinks present unique opportunities to create bio-instructive materials able to display high structural fidelity and fulfill the mechanical and functional requirements for in situ tissue engineering. Herein, 3D printable and perfusable multicomponent hydrogel constructs with high elasticity, self-recovery properties, excellent hydrodynamic performance, and improved bioactivity are reported. The materials' design strategy integrates fast gelation kinetics of sodium alginate (Alg), in situ crosslinking of tyramine-modified hyaluronic acid (HAT), and temperature-dependent self-assembly and biological functions of decellularized aorta (dAECM). Using extrusion-based printing approach, the capability to print the multicomponent hydrogel bioinks with high precision into a well-defined vascular constructs able to withstand flow and repetitive cyclic compressive loading, is demonstrated. Both in vitro and pre-clinical models are used to show the pro-angiogenic and anti-inflammatory properties of the multicomponent vascular constructs. This study presents a strategy to create new bioink whose functional properties are greater than the sum of their components and with potential applications in vascular tissue engineering and regenerative medicineen_US
dc.language.isoengen_US
dc.publisherJohn Wiley and Sons Incen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subject3D printingen_US
dc.subjectAorta graftsen_US
dc.subjectDecellularizationen_US
dc.subjectMulticomponent hydrogelsen_US
dc.subjectVascular tissue engineeringen_US
dc.title3D Printing of Extracellular Matrix-Based Multicomponent, All-Natural, Highly Elastic, and Functional Materials toward Vascular Tissue Engineeringen_US
dc.typearticleen_US
dc.authorid0000-0003-3445-1814en_US
dc.relation.ispartofAdvanced Healthcare Materialsen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Biyomühendislik Bölümüen_US
dc.institutionauthorArslan, Yavuz Emre
dc.identifier.doi10.1002/adhm.202203044en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorwosidM-2907-2016en_US
dc.authorscopusid36088908700en_US
dc.identifier.wosqualityQ1en_US
dc.identifier.wosWOS:000973993200001en_US
dc.identifier.scopus2-s2.0-85153626759en_US
dc.identifier.pmidPMID: 37014809en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess