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A B S T R A C T   

Recently, we showed that plasmon-exciton coupling can increase entropy current through a bridge coupled to 
plasmonic metal nanoparticles. Here we show that electron-phonon coupling can also be used to control the 
entropy current in similar systems. Entropy current tends to decrease due to electron-phonon coupling and to 
exhibit a monotonous decrease upon temperature ramping. However, an anomaly affecting the current where it 
is enhanced by electron-phonon coupling is indicated at around 42 times the system’s Kondo temperature. We 
therefore report means to control heat flow by tuning the Kondo resonance through the electron-phonon 
coupling. We analyze the conditions that bring about these trends due to electron-phonon coupling by 
employing non-equilibrium Green’s function formulation addressing the entropy current and the derived heat 
flow.   

1. Introduction 

Advances in nanotechnology device fabrication over the last decades 
have reached in the size scale the diffraction limit of the incident radi-
ation. A feat that bears potential to transform optoelectronic applica-
tions [1–4]. The decrease of the size scale of operational devices below 
the wavelength of the incident radiation achieves photo induced plas-
monic resonances. This progress stands on the tunability of the plas-
monic resonances in noble metal nanoparticles to focus the illumination 
into regions smaller than the wavelength of light [5,6]. 

Plasmons can be also used to improve the efficiency in photovoltaic 
devices primarily by directly increasing the cross section of the solar 
spectrum absorption [7–9], where the extinction coefficient of plas-
monic metal nanoparticles is orders of magnitude larger than alternative 
quantum dots or dyes [10]. The absorbed energy can be efficiently 
transported in the form of charge carrier resulting from strong 
dipole-dipole coupling [11,12]. However, so far the plasmon-enhanced 
resonant energy transfer remains ineffective due to the short lifetime of 
the plasmon, in contrast to electron-hole pairs generated in a dye or 
quantum dot [13]. On the other hand, plasmons can form a 
Bose-Einstein condensate in a lattice [14], which contributes to their 
stability in room temperature applications. 

Another potential benefit of plasmons for photovoltaic technology is 
by improving the control of heat transfer. Energy loss through heat re-
mains a fundamental challenge for optimizing the efficiency of solar 
energy conversion. Heat transfer can be controlled by chemical means 
[15] or physical tuning [16]. Heat transfer and current in molecular 
junctions affected by electron scattering due to electron-phonon 
coupling are widely studied [17–23]. Heat transfer in plasmonic sys-
tems is expected to be dominated by phonons [15,16,24]. A recent 
computational study showed that heat transfer that decreases upon 
electron-phonon coupling can be further inhibited under voltage bias 
[25]. Similarly, decrease in heat transfer due to electron phonon 
coupling was shown in oligoynes molecules that bridge two gold elec-
trodes [26]. 

The plasmon resonances of nanoparticles can be tuned to improve 
the control of heat transfer through a relatively new explored regime of 
strong coupling with excitons. In such a scenario, the plasmonic reso-
nances induce large electromagnetic field [27,28] that interacts strongly 
with nearby quantum emitters. The resulting strong coupling of plas-
mons with the resonant excitations of the quantum emitter gives rise to 
light-matter modes that are called plexcitons. These intriguing hybrid 
light-matter modes, that present a relative new field of explored physics, 
are well delocalized across the nanoparticle and open the door to design 
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means for the control of energy loss in the form of heat. Indeed, the 
design of devices to include plexcitons bears enormous potential to 
improve the efficiency in various applications including those of opto-
electronic devices [29], lasing [30] and photocatalysis [31]. 

There have been several theoretical studies on plexcitons in nano-
junctions based on classical transformation optics [32], a semiclassical 
electrostatic eigenmode model [33] and a hybrid technique that merges 
a discrete interaction model with quantum mechanics [34]. A relevant 
quantum mechanical model that allows to account well for the contri-
bution of the spin degrees of freedom within the quantum emitter can be 
achieved using Green’s function (GF) formulation [35]. For example, 
relevant studies using this approach identified the dipolar plasmon 
mode as means to control the current in systems affected by strong 
plasmon-exciton coupling. In addition calculations based on GF 
approach with the non-crossing approximation (NCA) achieved the first 
analysis of the interplay between the strong electron correlations within 
the quantum emitter and the plexcitons [36]. This work highlighted the 
crucial role of electron correlations, relating the Fano resonances in the 
optical emission spectrum to plasmon-exciton coupling. The same 
technique was later used to investigate the role of strong electron cor-
relation in the electrical conductance [37], which is enhanced with the 
increase of plasmon-exciton coupling at ambient temperatures around 
or below the Kondo temperature. Similarly, the entropy current, for a 
Coulomb blockaded quantum emitter bearing strong onsite electron 
correlation increases with plasmon-exciton coupling [38]. Nevertheless, 
a realistic picture of plexcitons and their effect on heat current has not 
emerged yet. In particular, to the best of our knowledge none of the 
earlier studies addressed the role of electron-phonon coupling within the 
quantum emitter which are expected to play an important role in 
affecting the response of the heat flow to plexitons. 

In this paper, we report control of heat flow by tuning electron- 
phonon coupling in junctions affected by Kondo resonances. The tem-
perature dependence of the entropy current through a plexcitonic 
nanojunction is analyzed, where we address directly the effects of vi-
bration and strong electron correlation within the quantum emitter. We 
implement a sophisticated many-body theory on a relatively simple 
model to study the generation of plexitons in plasmonic nanojunctions. 
We address means to control the heat transfer based on induced Kondo 
resonances by tuning electron-phonon coupling. 

2. Computational approach 

2.1. Model 

The nanojunction consists of a quantum emitter bridging two metal 
nanoparticles shown schematically in Fig. 1. Two spin degenerate levels 
within the quantum emitter are designated by |g〉 and |e〉 with an energy 
gap of ∣ϵe − ϵg∣. The emitter states are coupled to the nanoparticles 
through the plasmon-exciton coupling ΔK, where K corresponds to L or R 
nanoparticles. The plasmonic nanoparticles are excited by laser radia-
tion, while the nanojunction is affected by an infitismal voltage bias and 
a temperature gradient across the nanoparticles of TL to TR. 

For each emitter level, s, c†sσ(csσ) creates (annihilates) an electron 
with spin σ, and for the metal nanoparticle plasmonic states we note the 
creator (annihilator) operator as c†Kσ(cKσ). Similarly, b†K(bK) is the 
bosonic operators that creates (annihilates) a plasmon of energy ϵpK in 
the nanoparticle. The laser frequency is represented by the energy 
parameter ϵα. J is the amplitude of the electron transfer integral between 
|g〉 and |e〉, VK,g(e) denotes the coupling amplitude between the metal 
nanoparticle, K, and |g(e)〉. Wα,K represents the interaction strength be-
tween the laser irradiation in mode α and the dipolar plasmon modes of 
each nanoparticle. ΔK corresponds to the strength of the coupling be-
tween the dipolar plasmon modes of the left or right metal nanoparticle 
and the exciton formed in the quantum emitter. Finally, λ denotes the 
strength of the electron-phonon coupling with d†(d) creating 

(annihilating) a phonon localized within the quantum emitter and ω0 is 
the phonon energy. 

The Hamiltonian representing this nanojunction addressing the 
emitter states and plasmons includes the following terms: 

H = HN + HEN +
∑

α∈{E,rad}

(Hα +Vα). (1)  

The HN term represents the metal nanoparticles such that 

HN =
∑

K∈{L,R},σ
ϵKσc†KσcKσ +

∑

K∈{L,R}

ϵpKb†
KbK , (2) 

The HEN terms introduce the plasmon-exciton coupling 

HEN =
∑

K∈{L,R},σ

(
ΔKc†eσcgσbK + h.c.

)
(3)  

The HE terms address the quantum emitter states 

HE =
∑

s∈{g,e},σ
[ϵs + λ(d + d†)]c†sσcsσ + ω0d†d

+J
∑

σ

(
c†gσceσ + h.c.

)
+

U
2

∑

s∈{g,e}

nsσnsσ′ ,

(4)  

and VE coupling of the emitter states to the electronic states in the metal 
nanoparticles 

VE =
∑

K∈{L,R},σ

(
VK,g(e)c†Kσcg(e)σ + h.c.

)
(5) 

The electronic tunneling that couples the metal nanoparticles and 
the quantum emitter states Γ is defined as follows: 

Γ = ΓL,g = 2π∣VL,g(ϵf )|
2

Γ = ΓR,e = 2π∣VR,e(ϵf )|
2
,

(6)  

where Γ is defined as Γ ≡ Γρ(ϵf ), and ρ(ϵf) is the density of states of the 
metal nanoparticles at the Fermi level. Importantly below we consider 
the regime of strong electron-phonon coupling, λ, that is comparable to 
the electronic coupling, Γ. 

A canonical transformation can be used to drop the strong electron- 
phonon coupling term. Here we use the unitary Lang-Firsov canonical 
transformation [39]. 

Fig. 1. A nanojunction made up of a two level quantum emitter, |g〉 and e, 
located between two plasmonic metal nanoparticles at TL and TR temperatures. 
The junction is affected by a sufficient large voltage bias and temperature dif-
ference. The laser radiation excites plasmon modes of the nanoparticles, leads 
to the electronic excitation energy through plasmon-exciton coupling, Δ. The 
electron-phonon coupling, λ, is indicated by the purple lines. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 
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S = exp

[
λ

ω0

∑

s,σ
c†sσcsσ(d† − d)

]

(7)  

The outcome of this transformation is 

SdS† = d −
λ

ω0

∑

s,σ
c†sσcsσ

ScsσS† = csσX,

(8)  

where 

X = exp
[

−
λ

ω0
(d† − d)

]

(9)  

The electron operators in the quantum emitter acquire X after this 
transformation, which indicates polaron formation at the junction. 

This transformation converts the Hamiltonian describing the quan-
tum emitter into 

HE = SHES† =
∑

s∈{g,e},σ

(

ϵs −
λ2

ω0

)

c†sσcsσ + ω0d†d+

J
∑

σ

(
c†gσceσ + h.c.

)
+

(
U
2
−

2λ2

ω0

)
∑

s∈{g,e}

nsσnsσ′ ,

(10)  

which results in renormalization of the discrete levels and the Hubbard 
interaction as ϵs = ϵs − λ2/ω0 and U = U/2 − (2λ2 /ω0) respectively. The 
electronic population distribution depends on the discrete levels. 
Therefore, the inelastic effects directly alter the electronic population in 
discrete states due to the renormalization. 

Despite the renormalization of the Hubbard interaction strength, it is 
still much larger than the linewidth of each discrete level owing to the 
close confinement of electrons. Therefore, this amounts to U→∞ for all 
practical purposes. This essentially restricts the occupancy of each 
discrete level to a single electron. In order to be able to apply standard 
diagrammatic techniques to this case, the original electron operators are 
written in terms of a massless boson (b) and a pseudofermion operator 
(f) as 

cg(e)σ = b†

g(e)fg(e)σ

c†g(e)σ = f †g(e)σbg(e),
(11)  

provided that 

QB,g(e) = b†

g(e)bg(e) +
∑

σ
f †g(e)σfg(e)σ = 1. (12)  

This boson operator keeps the occupancy of each discrete level to unity 
while allowing to discard the Hubbard term from the Hamiltonian 
altogether. Consequently, the Hamiltonian term that models the quan-
tum emitter is reduced to 

HE =
∑

s∈{g,e},σ
ϵsf †sσfsσ + ω0d†d+

J
∑

σ

(
f †gσfeσ + h.c.

)
,

(13)  

while the tunneling Hamiltonian becomes 

VE =
∑

K∈{L,R},σ

(
ṼK,g(e)c†Kσb†

g(e)fg(e)σ + h.c.
)

(14)  

with 

ṼK,g(e) = VK,g(e)exp − Ve− p(Nph + 1
/

2), (15) 

In the last equation we consider the expectation value of the phonon 
operator. This expression of the operator is valid only when the hopping 

is small compared to the electron-phonon interaction, i.e. VK,g(e) ≪ λ 
[40] a condition that is satisfied by the paramaters used below. The 
replacement of the phonon operator with its expectation value in this 
formalism assumes the formation of a polaron in the junction [41]. 

In Eq. (15), Ve− p = (λ/ω0)
2 will be referred to as the electron-phonon 

coupling strength from now on and Nph stands for the number of pho-
nons, which obeys the usual Bose-Einstein statistics at any given tem-
perature T. We note that the above equations converge to the approach 
adopted in our previous study [38] only in the limit where λ → 0. The 
last term adds the interaction due to quantum emitter and the radiation. 
The laser radiation is included via 

Hrad =
∑

α
ϵαa†

αaα (16)  

while Vrad corresponds to the interaction between the laser radiation and 
the plasmon modes of each nanoparticle 

Vrad =
∑

K∈{L,R},α

(
Wα,Ka†

αbK + h.c.
)

(17)  

2.2. Model setup 

The discrete levels in the quantum emitter are placed at ϵg = − 4.8 eV 
and ϵe = − 1.6 eV. Here, the minus sign indicates that the levels lie below 
the Fermi level of the metal nanoparticles ϵf which is set to zero refer-
ence energy. To enforce Coloumb blockade we set U → ∞, so that cur-
rent flows only when the Kondo resonance exists. The dipolar plasmon 
energy ϵp = 3.49 eV, the laser bandwidth δ = 1 meV and the laser 
coupling to the dipolar plasmon mode γ = 2π∣W0∣2 = 86 meV. These 
values are the same as used in earlier studies and allow to highlight the 
effect of electron-phonon coupling that were not included in those 
studies [36–38,42]. 

The two nanoparticles are associated with the same parabolic density 
of states with half bandwidth of D = 7.2 eV. The left nanoparticle is kept 
at ambient temperature, i.e. TL = T. For these parameters, non- 
renormalized TK,e turns out to be around 23 K while TK,g ≈ 0. This 
means that ϵg remains under Coulomb blockade for any experimentally 
relevant temperature. In the rest of the discussion we drop the state 
subscript in referring to the Kondo temperature of either nanoparticle by 
addressing to |e〉, since TK,g is effectively zero on the absolute scale. We 
set ω0 = 0.06Γ as a constant and vary λ to control the electron-phonon 
coupling Ve− p = λ2/ω2

0. The strength of the electron-phonon coupling, 
λ, is established by comparing to the electronic coupling, Γ. Here we 
study λ = 0.09Γ and λ = 0.116Γ, where the electron-coupling is signif-
icant enough to justify a canonical transformation, while not strong 
enough to quench the Kondo resonance entirely [43]. 

There are two characteristic timescales governing the dynamics of 
this system. The timescale for the electron transfer is τe = 1/TK,e, and the 
timescale for the phonons is τp = 1/ω0, where τe is an order of magnitude 
larger than τp. This is physically reasonable since the electron transfer is 
expected to occur only once the Kondo resonance is developed and it 
takes quite a considerable time for the Kondo resonance to build up as 
shown in Ref. 40 [44]. 

A single mode laser with energy ϵ0 is assumed to pump only the 
dipolar plasmon mode of the metal nanoparticles where excitations of 
the quantum emitter by the laser beam is ignored. This enables to drop 
the J term in HE. It is then permitted to set the dipolar plasmon energy 
for each nanoparticle to ϵpL = ϵpR = ϵp in conjunction with considering 
symmetrical plasmon-exciton and plasmon-laser couplings ΔL = ΔR = Δ 
and W0,L = W0,R = W0. Finally, to tune the effective non-equilibrium 
condition of a temprature gradient either the intensity of the laser 
beam can be adjusted, or the plasmonic states of the nanoparticles can 
be varied to represent different sizes. 
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2.3. Quantum transport modeling 

We now turn to describe the quantum transport corresponding to the 
model depicted above and in particular address the Kondo resonance. 
Non-equilibrium GFs expressions in the two time variables space are 
adopted to investigate the dynamical quantum transport. We refer to the 
Appendix and references for the definitions of the GFs in terms of the 
operators introduced above and for detailed descriptions of the Dyson 
equations and the numerical solution procedure [36,45,46]. 

The discrete energy levels |g〉 and |e〉 of the quantum emitter are not 
directly coupled, where each is coupled to only one of the plasmonic 
nanoparticles leading to a blockade. However, a laser excitation of the 
metal nanoparticles and plasmon-exciton coupling enable transition 
between the excitonic emitter states (|g〉 to |e〉). The mechanism that 
overcomes the blockade relies on a many body state forming the Kondo 
resonance. Accordingly, an electron in |e〉 tunnels to the right nano-
particle essentially lifting the blockade, where an electron with an 
opposite spin in |g〉 tunnels through the plasmon-exciton coupling to the 
now vacant |e〉 almost simultaneously. This is equivalent to a spin flip at 
the particular energy level [47], which induces current flow inspite of 
the Coulomb blockade. In order to form a Kondo resonance, electrons 
must tunnel almost simultaneously. This amount to a cotunneling pro-
cess. Hence, when an electron with spin up leaves ∣e > level, another 
electron with the opposite spin must replace it so that the antiferro-
magnetic interaction between the spins of two electrons will form a spin 
singlet with orbital angular momentum L = 0. This is the main 
requirement for the development of the Kondo resonance. Unless the 
Kondo resonance develops, the system will remain in Coulomb blockade 
and the transport will be blocked. Therefore, an electron with the same 
spin cannot occupy ∣e > in a Coulomb blockaded system once it is 
vacated. This can be possible only in a tight binding model which is not 
our configuration in this paper. Spin flip processes involving a single 
level exist. Nevertheless, these processes do not affect the transport 
between the left and right metal nanoparticles. We only describe the 
processes that contribute to the heat flow between the left and right 
nanoparticles.. 

The formation of Kondo resonance requires positioning the emitter 
state energies below the Fermi level of the metal nanoparticles ϵf. The 
sharp Kondo resonance builds up in the density of states (DOS) slightly 
above ϵf and is maximized at or below the Kondo temperature [48]. The 
corresponding Kondo temperature depends on the nanoparticles’ DOS, 
the emitter state energy ϵg, and the electronic coupling Γ, as follows: 

TK,g ≃

(
DΓ
4

)1
2

exp
(
−

π
⃒
⃒ϵg

⃒
⃒

Γ

)
(18)  

In this expression, D is the half bandwidth of the density of states of the 
metal nanoparticles. Since the energy gap ∣ϵe − ϵg∣ in our model is very 
large, the problem can still be effectively treated as SU(2) symmetry 
[49]. 

The replacement of the phonon operator with its expectation value 
predicts that the Kondo temperature changes exponentially with the 
electron-phonon coupling, but it has been claimed not to be true [50, 
51]. There are also previous works which incorporated the phonons 
within the NCA without this decoupling [52,53]. The latter work has 
some similarity with ours because it has two levels hybridized with 
conducting leads and phonons, and discusses the Kondo temperature TK. 
Nevertheless, we conclude that our results are still valid, even though 
the renormalized value of TK is probably somewhat underestimated. 
This issue does not effect our calculations because we do not claim to 
know the precise renormalized value of TK and all our graphs are plotted 
in terms of T/TK where TK is the non-renormalized value (i.e. in the 
absence of electron-phonon coupling). Furthermore, the value of TK is 
not an input to our calculations whether it is renormalized or not.We just 
use its reduction in the presence of finite electron-phonon coupling as a 
benchmark to interpret our results. Hence, this pathological situation 

does not invalidate our results in any way. 
An approximation is needed to tackle the strong electron correlations 

that arise in the limit u → ∞. We resort to the well-established NCA [44, 
45] to write the self-energies of pseudofermions and slave bosons 
introduced above in eq. (11). (The detailed expressions of the affected 
pseudofermion and slaveboson self-energies in the Dyson equations are 
detailed in the appendix.) NCA was applied to study electrical conduc-
tance of a single quantum dot coupled to metallic electrodes [54], where 
the experimental values above 0.1TK were reproduced well. Further-
more, NCA was found to capture the Kondo resonance in the density of 
states quite accurately at ambient temperatures well below TK [48,55]. 
In general, NCA was found to estimate reliably physical observables 
even at low ambient temperatures T, provided that T > Tp, where Tp/TK 
≈ πTK/Γ [56]. At the lower temperatures, T < Tp, the NCA fails to 
reproduce experimental results due to the departure from the Fermi 
liquid behaviour [56]. Below we find that Tp ≈ 0.18 K (TK = 23 K and Γ 
= 0.8 eV) validating the use of the NCA at temperatures above this low 
limit. 

The entropy current through this nanojunction, from which heat 
flow can be directly be deduced, is defined in terms of the energy (IE) and 
particle currents (I) as [38]. 

Is =
IE

L − μLIL

TL
+

IE
R − μRIR

TR
+

IE
γ − μγIγ

Tγ
, (19)  

where the nominator in each term corresponds to the decomposition of 
the heat current, which can be expressed as Ih = KAΔT. Here, ΔT is the 
temperature gradient, A is the cross section of the junction and K is the 
thermal conductivity. Therefore, the entropy current can be directly 
contrasted to measured heat flow at a specific temperature [57,58]. In 
Eq. (19), the first two terms correspond to the left (L) and right (R) 
electron reservoirs, whereas the third term represents the photon bath 
(γ). We assume no direct coupling between the photon bath and the 
quantum emitter, thus the contribution of the photon bath to the entropy 
current is captured by the plasmon Green functions. See the Appendix 
for more information. 

The radiation field current is given by 

IE
γ,g(e)(t) = Re

∫ t

− ∞
dt1

(
−
(

gg(e)(t, t1)B<
g(e)(t1, t)

+ G<
g(e)(t, t1)eφ(t− t1)bg(e)(t1, t)

)
Ξ<

γ (t1, t) − i
(

G<
g(e)(t, t1)eφ(t− t1)

bg(e)(t1, t)
)
Ξa

γ (t1, t)
) )

(20) 

This is a general expression of the current assuming the coupling of 
the electrons within the quantum emitter with an external bosonic bath 
adapted to the auxiliary particle formalism. Here, Ξ>(<)

γ (t1, t) corre-
sponds to the self-energy of the photons due to the coupling to the 
quantum emitter. Since there is no direct coupling of the radiation field 
to the quantum emitter, the contribution of this term to the entropy 
current vanishes. Nevertheless, the radiation field contributes indirectly 
through the excitation of the plasmon modes in the metal nanoparticles. 
These plasmon modes interact with the quantum emitter via the 
plasmon-exciton coupling. 

The lesser Green functions can be defined in connection with the 
operators introduced as G<

g(e)(t, t
′

) = G<
g(e)(t, t

′

)eφ(t− t′ ) =<

f †g(e)σ(t
′

)fg(e)σ(t) > eφ(t− t′ ) and B<
g(e)(t, t

′

) =< b†g(e)(t
′

)bg(e)(t) > while the 

greater ones are G>

g(e)(t, t
′

) = G>
g(e)(t, t

′

)eφ(t′ − t) =< fg(e)σ(t)f †g(e)σ(t
′

) >

eφ(t′ − t) and B>
g(e)(t, t

′

) = < bg(e)(t)b†g(e)(t
′

) >. In these expressions, phase 
factors defined as φ(t − t′) = log e < X†(t′)X(t) > turn out to be [43]. 

φ(t − t
′

) = − Ve− pNph(1 − e− iω0(t− t′ ))−

Ve− p(Nph + 1)(1 − eiω0(t− t′ )),
(21)  

where Ve− p = λ2/ω2
0. The combination of these analytic pieces yields the 

A. Goker et al.                                                                                                                                                                                                                                   



Physica E: Low-dimensional Systems and Nanostructures 127 (2021) 114536

5

retarded functions such that 

Gr
g(e)(t, t′ ) = − iθ(t − t′ )[G>

g(e)(t, t′ )eφ(t′ − t)+

G<
g(e)(t, t

′

)eφ(t− t′ )]

= − iθ(t − t
′

)gg(e)(t, t
′

)

Br
g(e)(t, t′ ) = − iθ(t − t′ )[B>

g(e)(t, t
′

) − B<
g(e)(t, t′ )]

= − iθ(t − t′ )bg(e)(t, t′ ).

(22) 

Since the left and right nanoparticles are assumed to be coupled only 
to |g〉 and |e〉 respectively, the non-vanishing components of the particle 
current can be cast in terms of the Green functions as 

ILg(t) = − 2ΓRe
∫ t

− ∞
dt1G<

g (t, t1)eφ(t− t1)bg(t1, t)h(t − t1)

+2ΓRe
∫ t

− ∞
dt1(gg(t, t1)B<

g (t1, t) + G<
g (t, t1)eφ(t− t1)

bg(t1, t))fL(t − t1)

(23)  

and 

IRe(t) = − 2ΓRe
∫ t

− ∞
dt1G<

e (t, t1)eφ(t− t1)be(t1, t)h(t − t1)

+2ΓRe
∫ t

− ∞
dt1(ge(t, t1)B<

e (t1, t) + G<
e (t, t1)eφ(t− t1)

be(t1, t))fR(t − t1).

(24)  

In these expressions 

h(t − t1) =

∫ D

− D

dϵ
2π ρ(ϵ)eiϵ(t− t1), (25)  

fL(t − t1) =

∫ D

− D

dϵ
2π ρ(ϵ) eiϵ(t− t1)

1 + eβL(ϵ− V/2) (26)  

and 

fR(t − t1) =

∫ D

− D

dϵ
2π ρ(ϵ) eiϵ(t− t1)

1 + eβR(ϵ+V/2). (27) 

Concurrently, the energy currents flowing through |g〉 and |e〉 be-
tween the left and right nanoparticles are given by 

IE
Lg(t) = − 2ΓRe

∫ t

− ∞
dt1G<

g (t, t1)eφ(t− t1)bg(t1, t)hE(t − t1)

+2ΓRe
∫ t

− ∞
dt1(gg(t, t1)B<

g (t1, t) + G<
g (t, t1)eφ(t− t1)

bg(t1, t))f E
L(t − t1)

(28)  

and 

IE
Re(t) = − 2ΓRe

∫ t

− ∞
dt1G<

e (t, t1)eφ(t− t1)be(t1, t)hE(t − t1)

+2ΓRe
∫ t

− ∞
dt1(ge(t, t1)B<

e (t1, t) + G<
e (t, t1)eφ(t− t1)

be(t1, t))f E
R(t − t1),

(29)  

where 

hE(t − t1) =

∫ D

− D

dϵ
2π ρ(ϵ)ϵeiϵ(t− t1), (30)  

f E
L(t − t1) =

∫ D

− D

dϵ
2π ρ(ϵ)ϵ eiϵ(t− t1)

1 + eβL(ϵ− V/2) (31)  

and 

f E
R(t − t1) =

∫ D

− D

dϵ
2π ρ(ϵ)ϵ eiϵ(t− t1)

1 + eβR(ϵ+V/2). (32) 

In expressing the entropy current the electron-phonon coupling is 
affected by the phase factors between two phonon operators at different 
times attached to the lesser pseudofermion Green functions. This 
approach results from the NCA as discussed after eq. (15). In the limit of 
vanishing electron-phonon coupling Ve− p = 0, the phase becomes zero, 
recovering the previously reported formulas [38]. 

3. Results and discussion 

We investigate the effect of electron-phonon coupling on the ther-
modynamics of the nanojunction composed of the emitter states sus-
pended between the two nanoparticles. We start by considering low 
temperature of 0.12TK under several plasmon-exciton coupling 
strengths, and where electron-phonon coupling is included. In partic-
ular, as shown in Fig. 2, the electron-phonon coupling affects a signifi-
cant suppression of the current, while plasmonic-electronic coupling 
bears the opposite effect of enhancing the current [38]. The suppression 
of the entropy current due to electron-phonon coupling is observed at 
several values of plasmon-exciton coupling. The trends of the current to 
decrease with the electron-phonon coupling is indicated by the solid 
lines, whereas the trend of the current to increase with plasmonic 
coupling is indicated by the shaded lines. 

We next follow the effect of the phonon coupling on the entropy 
current as the temperature is ramped up and again for various plasmon- 
exciton coupling strengths in Fig. 3. The overall effect of the increased 
temperature appears to reduce the entropy current [38]. (The temper-
ature gradient is kept the same in all cases.) At sufficiently large tem-
peratures the entropy current vanishes. See inserts included in the three 
panels each of the different electron plasmonic coupling values. 

The current suppression originates from the energetic stabilization of 
the discrete energy levels ϵg(e) as well as the weakening of the tunnel 
coupling in Eq. (15) due to the renormalization induced by finite 
electron-phonon coupling. These two effects jointly lower the Kondo 
temperature in Eq. (18) as both the prefactor and the exponent decrease 
in value with the increase of the coupling. Consequently the entropy 
current is further suppressed as the temperature is incremented when 
affected by the electron-phonon coupling. The most discernible effect of 
finite electron-phonon coupling is to suppress the sharp Kondo reso-
nance appearing in the density of states at fixed ambient temperature via 

Fig. 2. The entropy current drops with the increase of electron phonon 
coupling shown for three cases of plasmon-exciton coupling (20, 40 and 60 
meV) at low temperature of 0.12TK. The current increases with the plasmon- 
exciton coupling, see dotted lines [36]. 
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the renormalization of TK. Now, the Kondo resonance reaches its full 
prominence at ambient temperatures below TK, thus the suppression is 
more pronounced in this regime than the case where the Kondo reso-
nance is vanishingly small at T ≫ TK. This naturally results in a sharper 
drop in the entropy current values at low temperature regime versus the 
high temperature regime. 

However, there appears to be a deviation of this trend of current 
decrease with the temperature. As indicated in the figure, an anomaly, 
where the decrease in current is suspended, is observed around T ≈
42TK. This anomaly is noted for all the considered plasmon-exciton 
coupling strengths (see the three panels), and in fact shows an in-
crease of the current with temperature (in a small range of 

temperatures). Importantly, the anomaly depends on the electron- 
phonon coupling as indicated by the increase of the current upon in-
crease of the phonon coupling. The green line that corresponds to the 
strongest phonon coupling case is associated with the largest current at 
T ≈ 42TK, while it is the smallest in other temperatures. Indeed these 
complex effects of phonon coupling on the current are reflected in Fig. 4. 
In most temperatures the current is suppressed by phonon coupling as 
shown by the shaded dashed lines, whereas the trend of current increase 
with the coupling is observed for the blue line of T ≈ 42TK. The half- 
bandwidth of the metal nanoparticles is given as D = 7.2 eV and the 
dipolar plasmon energy is given as εp = 3.49 eV whereas 42TK corre-
sponds to 83 meV. This is roughly equal to the laser coupling to the 
dipolar plasmon mode which is 86 meV and much smaller than the other 
two energy scales mentioned above. A plot of the Lorentz number L as a 
function of temperature for various electron-phonon coupling strengths 
is given in Fig. 4 of Ref. 58. We refer the readers to consult that figure. 

We address the general trend where the current is suppressed by 
phonon coupling, and where at a particular range of temperatures 
determined by the Kondo resonance the phonon coupling enhances the 
current. To understand these trends we express the current by [38]. 

Is =
Ih

R

TR
=

ΔTGLT
T − ΔT

. (33)  

Here G stands for the electrical conductance and L denotes the Lorentz 
number, which quantifies the relation between the electrical and ther-
mal conductivities of metals for a given temperature T in Wiedemann- 
Franz law. It is appropriate to note here that in practice L values can 

deviate from the textbook value L0 =
π2k2

B
3e2 considerably and therefore 

may bear a significant effect on the measured current. 
We consider first the general trend of phonon coupling to suppress 

the current. In the limit of infinitesimal bias, it has been shown that the 
nonlinear corrections to L are negligible [38]. Therefore, the tempera-
ture dependence of the entropy current shown in Fig. 3 is due to the 
dependence of L and the electrical conductance G. As explained above 
similarly to the electrical conductance that is suppressed by 
electron-phonon coupling [37], the entropy current tends to be sup-
pressed by the phonon coupling. 

To explain the origin of the anomaly, we follow L as affected by a 
further increase of the temperature in the context of Equation. As shown 

Fig. 3. Entropy current as a function of the temperature, obtained with 
electron-phonon coupling values Ve− p = 0.00 [43], 2.25 and 3.75. Results are 
shown in three panels A, B, and C corresponding to plasmon-exciton coupling 
strengths Δ = 60, 40 and 20, respectively. The currents are obtained under 
infinitesimal bias and a temperature gradient of ΔT = 2 K between the metal 
nanoparticles. An anomaly in the current at temperature of about 42 times of 
the Kondo temperature is indicated. The insets show the overall temperature 
dependence of the current. 

Fig. 4. The entropy current with the increase of electron phonon coupling is 
shown for a fixed plasmon-exciton coupling, Δ = 40 meV and several ambient 
temperatures. The general trend of current inhibition is demostrated by the 
finer lines while the anomaly of current increase is indicated at ≈ 42TK. 
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previously, under a finite electron-phonon coupling effect, the L 
dependence on the temperature changes sign from a negative slope (for 
low T) to a positive slope (for high T), a transition that occurs at around 
42TK [59]. The L appears to become constant at the higher temperatures 
at the limit of vanishing coupling. Indeed under a larger enough tem-
perature and a finite electron-phonon coupling the L collapses. Impor-
tantly at the transition temperature of about 42TK, the L is reaching a 
maximal value, resulting in the anomaly of increased heat current with 
the temperature. 

4. Conclusions 

We study the effect of electron-phonon coupling on the heat current 
across a nanojunction to design means to control the flow. Three models 
consist of a two level quantum emitter sandwiched between metal 
nanoparticles supporting plasmon modes. Nonequilibrium Green func-
tion formulation addressing electron dynamics is used to calculate en-
tropy current affected by both electron phonon and electron plasmonic 
coupling terms. The heat flow can be directly inferred from the calcu-
lated entropy current, therefore presenting means to control the flow. 

We show that entropy current is suppressed by the increase of the 
temperature. This trend is further enhanced by electron-phonon 
coupling that appears to synergize the effect of the temperature to 
suppress the current. Interestingly, this effect of the phonon coupling is 
reversed by a dynamical buildup of the Kondo resonance. The presence 
of phonon coupling at around T ≈ 42TK the monotonous decline of the 
entropy current (and therefore of heat flow) by the ambient temperature 
is reversed, finding, instead, current increase with the temperature in-
crease. We relate this complex effect of electron-phonon coupling on the 

Kondo resonance leading to dynamical response of the Lorentz number. 
The relationships of phonon coupling and entropy current analyzed 

in this report bear potential to impact the design of state-of-the-art op-
toelectronic applications as means for controlling the heat flow. In 
particular, we predict that the heat flow can be controlled by gating the 
emitter states. The gating of the states effectively allows to tune the 
Kondo temperature and the Kondo resonances. To observe the reported 
trends in actual measurements requires that either the source or the 
drain nanoparticles to be at thermal equilibrium, where the emitter 
states and the electron-phonon coupling can be tuned to demonstrate the 
strong effect of the electron-phonon coupling on heat flow. We are 
particularly excited for the prospect of the measurement to confirm the 
heat flow increase in the presence of the Kondo resonances at about 
42TK under the effect of phonon coupling. More specifically, the entropy 
current reduces to Is = (KAΔT)/(T − ΔT).Here K is the thermal con-
ductivity, A is the cross section of the junction and ΔT is the temperature 
gradient. 
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APPENDIX 

Green functions and Dyson equations 

In this Appendix, we define the Green functions and then present the detailed structure of the Dyson equations for these Green functions. We also 
outline the numerical procedure employed to solve the Dyson equations. 

The lesser Green functions can be defined in connection with the operators introduced in the main text as G<

g(e)(t, t
′

) = G<
g(e)(t, t

′

)eφ(t− t′ ) =<

f †g(e)σ(t
′

)fg(e)σ(t) > eφ(t− t′ ) and B<
g(e)(t, t

′

) =< b†g(e)(t
′

)bg(e)(t) > while the greater ones are G>

g(e)(t, t
′

) = G>
g(e)(t, t

′

)eφ(t′ − t) =< fg(e)σ(t)f †g(e)σ(t
′

) > eφ(t′ − t) and 

B>
g(e)(t, t

′

) = < bg(e)(t)b
†

g(e)(t
′

) >. In these expressions, phase factors defined as φ(t − t′) = log e < X†(t′)X(t) > turn out to be [43]. 

φ(t − t′ ) = − Ve− pNph(1 − e− iω0(t− t′ ))−

Ve− p(Nph + 1)(1 − eiω0(t− t′ )),
(A-1)  

where Ve− p = λ2/ω2
0. The combination of these analytic pieces yields the retarded functions such that 

Gr
g(e)(t, t

′

) = − iθ(t − t
′

)[G>
g(e)(t, t

′

)eφ(t′ − t)+

G<
g(e)(t, t

′

)eφ(t− t′ )]

Br
g(e)(t, t′ ) = − iθ(t − t′ )[B>

g(e)(t, t
′

) − B<
g(e)(t, t′ )].

(A-2)  

These are the strict mathematical definitions of a retarded Green function before imposing any physical constraint such as the projection into QB = 1 
subspace and they are identical to Eq. (6) in another study by Aguado et al. [60] for φ = 0. The projection into QB = 1 subspace is performed after the 
Green functions are inserted into the Dyson equations in our procedure. Therefore, both sides of the Dyson equations have the same QB dependency 
which ensures a fully consistent treatment of this problem as explained below. 

Electron-electron interactions typically overwhelm the plasmon-exciton coupling within the quantum emitter as a result of the quantum 
confinement. Consequently, the plasmon-exciton coupling can be considered as a perturbation and the Dyson equations for the Green functions 
defined above can be constructed as 

(

i
∂
∂t
− ϵg(e)

)

Gr
g(e)(t, t

′

) = δ(t − t
′

)+

∫ ∞

− ∞
dt1Σr

g(e)(t, t1)Gr
g(e)(t1, t

′

)

(A-3) 
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i
∂
∂t

Br
g(e)(t, t

′

) = δ(t − t′ )+

∫ ∞

− ∞
dt1Πr

g(e)(t, t1)Br
g(e)(t1, t′ )

(A-4)  

(

i
∂
∂t
− ϵg(e)

)

G<
g(e)(t, t

′

)eφ(t− t′ ) =

∫ ∞

− ∞
dt1Σr

g(e)(t, t1)G<
g(e)(t1, t

′

)eφ(t1 − t′ )+

∫ ∞

− ∞
dt1Σ<

g(e)(t, t1)Ga
g(e)(t1, t

′

)

(A-5)  

i
∂
∂t

B<
g(e)(t, t

′

) =

∫ ∞

− ∞
dt1Πr

g(e)(t, t1)B<
g(e)(t1, t

′

)+

∫ ∞

− ∞
dt1Π<

g(e)(t, t1)Ba
g(e)(t1, t

′

).

(A-6) 

We now introduce the shorthand notation for the retarded Green functions such that 

Gr
g(e)(t, t

′

) = − iθ(t − t′ )[G>
g(e)(t, t′ )eφ(t′ − t)+

G<
g(e)(t, t′ )eφ(t− t′ )] := − iθ(t − t′ )gg(e)(t, t

′

),

Br
g(e)(t, t

′

) = − iθ(t − t′ )[B>
g(e)(t, t

′

) − B<
g(e)(t, t

′

)]

:= − iθ(t − t′ )bg(e)(t, t
′

).

(A-7)  

The Dyson equations needed to calculate the retarded pseudofermion Green functions can be explicitly written as 
(

∂
∂t
+ iϵg

)

gg(t, t
′

) = −

∫ t

t′
dt1K>

L (t, t1)b̃g (t, t1)gg(t1, t′ )

−

∫ t

t′
dt1∣Δ|

2g̃e(t, t1)b̃g(t, t1)B̃
<

e (t1, t)P<
L (t1, t)×

gg(t1, t
′

) (A-8)  

and 
(

∂
∂t
+ iϵe

)

ge(t, t
′

) = −

∫ t

t′
dt1K>

R (t, t1)b̃e (t, t1)ge(t1, t′ )

−

∫ t

t′
dt1∣Δ|

2g̃g(t, t1)b̃e(t, t1)B̃
<

g (t1, t)P>
R (t, t1)×

ge(t1, t′ ) (A-9)  

where the pseudofermion and slave-boson self energies and their projections into QB,g(e) = 1 have been obtained using the NCA procedure outlined 
earlier [37].Here, we have to mention that NCA captures dynamical quantities accurately at temperatures above 0.1TK [45]. The Kernels K>,<

L(R)(t, t
′

) can 
be expressed in terms of the density of states of the metal nanoparticles ρ(ϵ) with a half bandwidth of D as 

K<
L(R)(t, t

′

) = Γ
∫ D

− D

dϵ
2π ρ(ϵ) 1

1 + eβL(R)ϵ
eiϵ(t− t′ )

K>
L(R)(t, t

′

) = Γ
∫ D

− D

dϵ
2π ρ(ϵ) eβL(R)ϵ

1 + eβL(R)ϵ
eiϵ(t− t′ ),

(A-10)  

where βL(R) = 1/TL(R) and we assume 

Γ = ΓL,g = 2π∣VL,g(ϵf )|
2

Γ = ΓR,e = 2π∣VR,e(ϵf )|
2
.

(A-11)  

In these expressions, the Fermi level of the metal nanoparticles is represented by ϵf. To reach these equations, tunneling terms are assumed to be time 
and energy independent such that VK,g(e)(ϵ) = VK,g(e)(ϵf) and the coupling of each discrete level with the metal nanoparticles is taken to be equal, i.e. VL, 

g = VR,e which leads to Eq. A-11. Furthermore, we suppose Γ(ϵ) = Γρ(ϵ) and Γ = Γρ(ϵf ). 
The Dyson equations for the retarded slave boson Green functions can be set up similarly as 
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∂
∂t

bg(t, t′ ) = −

∫ t

t′
dt1K<

L (t1, t)g̃g (t, t1)bg(t1, t′ )

−

∫ t

t′
dt1∣Δ|

2g̃g(t, t1)b̃e(t, t1)G̃
<

e (t1, t)

×eφ(t1 − t)P>
L (t, t1)bg(t1, t

′

)

+

∫ t

t′
dt1∣Δ|

2g̃g(t, t1)B̃
<

e (t, t1)g̃e(t1, t)

×P<
L (t, t1)bg(t1, t

′

)

−

∫ t

t′
dt1∣Δ|

2g̃g(t, t1)B̃
<

e (t, t1)g̃e(t1, t)

×P>
L (t, t1)bg(t1, t

′

)

+

∫ t

t′
dt1∣Δ|

2g̃g(t, t1)B̃
<

e (t, t1)g̃e(t1, t)

×(P>
L (t, t1) − P<

L (t, t1))bg(t1, t′ ). (A-12)  

and 

∂
∂t

be(t, t
′

) = −

∫ t

t′
dt1K<

R (t1, t)g̃e (t, t1)be(t1, t
′

)

−

∫ t

t′
dt1∣Δ|

2g̃e(t, t1)b̃g(t, t1)G̃
<

g (t1, t)

×eφ(t1 − t)P<
R (t1, t)be(t1, t

′

)

+

∫ t

t′
dt1∣Δ|

2g̃e(t, t1)B̃
<

g (t, t1)g̃g(t1, t)

×P>
R (t1, t)be(t1, t

′

)

−

∫ t

t′
dt1∣Δ|

2g̃e(t, t1)B̃
<

g (t, t1)g̃g(t1, t)

×P<
R (t1, t)be(t1, t

′

)

−

∫ t

t′
dt1∣Δ|

2g̃e(t, t1)B̃
<

g (t, t1)g̃g(t1, t)

×(P>
R (t1, t) − P<

R (t1, t))be(t1, t′ ). (A-13) 

In these equations, the Green functions with a tilde on top are calculated in the limit of vanishing plasmon-exciton coupling following the previous 
work [36–38]. It is important to stress that this is not an additional approximation. The projection into QB,g(e) = 1 simply enforces this decoupling 
procedure. Intuitively, it has to be performed because the plasmon-exciton coupling is already included in the Dyson equations by ∣Δ∣2 factors and 
using Green functions with finite plasmon-exciton coupling would lead to double counting. Hence, our technique satisfies both the charge conser-
vation and the Ward identities despite the fact that the plasmon-exciton coupling is treated to second order in single-particle Green functions. 

The task then boils down to calculating the lesser Green functions after the retarded Green functions are obtained properly. The relevant Dyson 
equations for the pseudofermion lesser Green functions are 

(
∂
∂t
+ iϵg

)

G<
g (t, t

′

)eφ(t− t′ ) =

−

∫ t

− ∞
dt1K>

L (t, t1)b̃g(t, t1)G<
g (t1, t′ )eφ(t1 − t′ )

−

∫ t

− ∞
dt1∣Δ|

2g̃e(t, t1)b̃g(t, t1)B̃
<

e (t1, t)

×P<
L (t1, t)G<

g (t1, t′ )eφ(t1 − t′ )

+

∫ t′

− ∞
dt1K<

L (t, t1)B̃
<

g (t, t1)gg(t1, t
′

)

+

∫ t′

− ∞
dt1∣Δ|

2G<
e (t, t1)eφ(t− t1)B̃

<

g (t, t1)b̃e(t1, t)

×P>
L (t1, t)gg(t1, t′ ) (A-14)  

and 
(

∂
∂t
+ iϵe

)

G<
e (t, t′ )eφ(t− t′ ) =

−

∫ t

− ∞
dt1K>

R (t, t1)b̃e(t, t1)G<
e (t1, t′ )eφ(t1 − t′ )

−

∫ t

− ∞
dt1∣Δ|

2g̃g(t, t1)b̃e(t, t1)B̃
<

g (t1, t)
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×P>
R (t, t1)G<

e (t1, t
′

)eφ(t1 − t′ )

+

∫ t′

− ∞
dt1K<

R (t, t1)B̃
<

e (t, t1)ge(t1, t
′

)

+

∫ t′

− ∞
dt1∣Δ|

2G̃
<

g (t, t1)eφ(t− t1)B̃
<

e (t, t1)b̃g(t1, t)

×P<
R (t, t1)ge(t1, t

′

) (A-15)  

while their counterparts for the slave boson lesser Green functions are 

∂
∂t

B<
g (t, t′ ) = −

∫ t

− ∞
dt1K<

L (t1, t)g̃g (t, t1)B<
g (t1, t

′

)

−

∫ t

− ∞
dt1∣Δ|

2g̃g(t, t1)b̃e(t, t1)G̃
<

e (t1, t)

×eφ(t1 − t)P>
L (t, t1)B<

g (t1, t
′

)

+

∫ t

− ∞
dt1∣Δ|

2g̃g(t, t1)B̃
<

e (t, t1)g̃e(t1, t)

×P<
L (t, t1)B<

g (t1, t
′

)

−

∫ t

− ∞
dt1∣Δ|

2g̃g(t, t1)B̃
<

e (t, t1)g̃e(t1, t)

×P>
L (t, t1)B<

g (t1, t
′

)

+

∫ t

− ∞
dt1∣Δ|

2g̃g(t, t1)B̃
<

e (t, t1)g̃e(t1, t)

×(P>
L (t, t1) − P<

L (t, t1))B<
g (t1, t

′

)

+

∫ t′

− ∞
dt1K>

L (t1, t)G̃
<

g (t, t1)eφ(t− t1)bg(t1, t
′

)

+

∫ t′

− ∞
dt1∣Δ|

2B̃
<

e (t, t1)G̃
<

g (t, t1)eφ(t− t1)

×g̃e(t1, t)P<
L (t, t1)bg(t1, t

′

) (A-16)  

and 

∂
∂t

B<
e (t, t

′

) = −

∫ t

− ∞
dt1K<

R (t1, t)g̃e (t, t1)B<
e (t1, t

′

)

−

∫ t

− ∞
dt1∣Δ|

2g̃e(t, t1)b̃g(t, t1)G̃
<

g (t1, t)

×eφ(t1 − t)P<
R (t1, t)B<

e (t1, t
′

)

+

∫ t

− ∞
dt1∣Δ|

2g̃e(t, t1)B̃
<

g (t, t1)g̃g(t1, t)

×P>
R (t1, t)B<

e (t1, t
′

)

−

∫ t

− ∞
dt1∣Δ|

2g̃e(t, t1)B̃
<

g (t, t1)g̃g(t1, t)

×P<
R (t1, t)B<

e (t1, t
′

)

−

∫ t

− ∞
dt1∣Δ|

2g̃e(t, t1)B̃
<

g (t, t1)g̃g(t1, t)

×(P>
R (t1, t) − P<

R (t1, t))B<
e (t1, t

′

)

+

∫ t′

− ∞
dt1K>

R (t1, t)G̃
<

e (t, t1)eφ(t− t1)be(t1, t′ )

+

∫ t′

− ∞
dt1∣Δ|

2B̃
<

g (t, t1)G̃
<

e (t, t1)eφ(t− t1)

×g̃g(t1, t)P>
R (t1, t)be(t1, t

′

). (A-17) 

An important aspect regarding the structure of these equations is that the left and right plasmon Green functions are embedded into the Dyson 
equations above after they are determined using the previously reported procedure [36] where the temperature of each nanoparticle is encoded via the 
left and right Kernels K>,<

L(R)(t, t
′

). The contribution to the entropy flux due to coupling to radiation field via plasmons is buried in the plasmon Green 
functions which are calculated separately for each metal nanoparticle due to the temperature gradient. Furthermore, we want to stress that it is 
imperative to keep the phase factors attached to the lesser pseudofermion Green functions throughout the calculations in order to describe the in-
fluence of the electron-phonon in an accurate way. 

The plasmon-exciton coupling in this paper ranges between 20 and 60 meV following the work of Manjavacas et. all [42]. and hence it is two orders 
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of magnitude smaller than electron-electron interactions. Moreover, the laser irradiates only the metal nanoparticles as noted. Therefore, the only 
transition mechanism between the discrete states is via the plasmon-exciton coupling. This assumption enables us to decouple the 4 operator Green 
functions which correspond to the entire quantum emitter into 2 operator Green functions which represent each discrete state and treat the weak 
plasmon-exciton coupling as a perturbation. 

Before we conclude, we would like to provide a brief outline of the method that is employed to solve the Dyson equations numerically. The first step 
in this method is to put them in a discretized form in a two dimensional cartesian grid whose axis values correspond to the time arguments of Green 
functions. In order to use the computer memory efficiently, the lower and upper triangular parts of a square matrix are used to store the values of the 
lesser and retarded green functions respectively. The main bottleneck in this type of problem is that the strong electron-electron interactions are 
captured by the tails along the sides away from the diagonal. As the ambient temperature starts to fall below the Kondo temperature, the decay of these 
tails gets gradually slower. Therefore, the convergence of the calculation is checked by increasing the matrix size for each temperature until the results 
no longer change. This usually requires having to use matrix sizes on the order of thousands for low temperatures. Furthermore, the size of the matrix 
for the plasmon Green functions has to be equal with the corresponding pseudofermion and slave boson ones as a consequence of this algorithm. Most 
of the technical details regarding the discretization and numerical implementation of the resulting set of equations have been presented previously and 
we refer the reader to these [45,46]. 
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