Nano-hydroxyapatite incorporated quince seed mucilage bioscaffolds for osteogenic differentiation of human adipose-derived mesenchymal stem cells
Citation
Cetin Genc, C., Yilmaz, H. D., Karaca, B., Kiran, F., & Arslan, Y. E. (2022). Nano-hydroxyapatite incorporated quince seed mucilage bioscaffolds for osteogenic differentiation of human adipose-derived mesenchymal stem cells. International Journal of Biological Macromolecules, 195, 492-505. doi:10.1016/j.ijbiomac.2021.12.054Abstract
In this study, the therapeutic hydrocolloid quince seed mucilage (QSM) from Cydonia oblonga Miller fruit is enriched with needle-like nano-hydroxyapatite (nHAp) crystals to fabricate a novel biomimetic osteogenic bioscaffold. The molecular weight (Mw) of water-based extracted QSM was measured with GPC (8.67 × 105 g/mol), and the composite blend was prepared at a ratio of 1:1 (w/w) QSMaq and nHAp. The porous bioscaffolds were manufactured by the freeze-drying method, and evaluated in-depth with advanced analyses. The XRD, ATR-FTIR, SEM-EDX, and elemental mapping analyses revealed a uniform coated semi-crystalline structure with no covalent bindings between QSM and nHAp. Moreover, due to the hydrocolloid backbone, a supreme swelling ratio (w/w, 6523 ± 190%) with suitable pore size (208.12 ± 99.22 μm) for osteogenic development was obtained. Further, the cytocompatible bioscaffolds were evaluated for osteogenic differentiation in vitro using human adipose-derived mesenchymal stem cells (hAMSCs). The immuno/histochemical (I/HC) staining revealed that the cells with the spherical morphology invaded the pores of the prepared bioscaffolds. Also, relatively early up-regulated osteogenic markers were observed by the qRT-PCR analyses. Overall, it is believed that the QSM-nHAp bioscaffolds might be favorable in non-load bearing applications, especially in the cranio-maxillofacial region, due to their regenerative, bendable, and durable features.