dc.contributor.author | Çelik, Ebutalib | |
dc.contributor.author | Gürbüz-Caldağ, Merve | |
dc.date.accessioned | 2024-02-21T06:12:56Z | |
dc.date.available | 2024-02-21T06:12:56Z | |
dc.date.issued | 2024 | en_US |
dc.identifier.citation | Çelik, E., Gürbüz-Çaldağ, M. (2024) Solution of MHD-stokes flow in an L-shaped cavity with a local RBF-supported finite difference. Engineering Analysis with Boundary Elements, 158, 356-363. doi: 10.1016/j.enganabound.2023.11.004 | en_US |
dc.identifier.issn | 0955-7997 / 1873-197X | |
dc.identifier.uri | https://doi.org/10.1016/j.enganabound.2023.11.004 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12428/5705 | |
dc.description.abstract | One of the popular meshless methods for solving governing equations in applied sciences is a local radial basis function-finite difference (RBF-FD). In this paper, we proposed a new idea for an L- shaped (or like T- and Z-shaped) domain based on the domain decomposition. RBF-FD formulation is used at the interface points to get a better solution, while the classical FD is applied to all sub-regions. We use the algorithm based on the Gaussian-RBF (RBF-GA) in the stable calculation of the weights to avoid choosing optimal shape parameters. Stencil size is considered the nearest n-points (9,12,15) and benchmark results are presented for divided-lid driven cavity. Further, Navier–Stokes equations adding the Lorentz force term with Stokes approximation for a single-lid L-shaped cavity exposed to inclined magnetic field are solved by the devised numerical method. The flow structure is analyzed in aspect of streamline topology under the various magnetic field rotation (0∘≤α≤90∘ ) and its strength (M=10,30,50,100 ). | en_US |
dc.language.iso | eng | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Cavity flow | en_US |
dc.subject | L-shaped | en_US |
dc.subject | MHD-stokes | en_US |
dc.subject | RBF-FD | en_US |
dc.title | Solution of MHD-stokes flow in an L-shaped cavity with a local RBF-supported finite difference | en_US |
dc.type | article | en_US |
dc.authorid | 0000-0002-4500-4465 | en_US |
dc.relation.ispartof | Engineering Analysis with Boundary Elements | en_US |
dc.department | Meslek Yüksekokulları, Çanakkale Teknik Bilimler Meslek Yüksekokulu, Bilgisayar Teknolojileri Bölümü | en_US |
dc.identifier.volume | 158 | en_US |
dc.identifier.startpage | 356 | en_US |
dc.identifier.endpage | 363 | en_US |
dc.institutionauthor | Çelik, Ebutalib | |
dc.identifier.doi | 10.1016/j.enganabound.2023.11.004 | en_US |
dc.relation.publicationcategory | Rapor | en_US |
dc.authorwosid | IZP-6806-2023 | en_US |
dc.authorscopusid | 57202201981 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.identifier.wos | WOS:001112520400001 | en_US |
dc.identifier.scopus | 2-s2.0-85176500823 | en_US |