Advanced Search

Show simple item record

dc.contributor.authorÖz, Muhammed Ali Nur
dc.contributor.authorMercimek, Muharrem
dc.contributor.authorKaymakçı, Özgur Turay
dc.date.accessioned2023-06-05T07:20:18Z
dc.date.available2023-06-05T07:20:18Z
dc.date.issued2022en_US
dc.identifier.citationÖz, M. A. N., Mercimek, M., & Kaymakçı, O. T. (2022). Anomaly localization in regular textures based on deep convolutional generative adversarial networks. Applied Intelligence, 52(2), 1556-1565. doi:10.1007/s10489-021-02475-3en_US
dc.identifier.issn0924-669X / 1573-7497
dc.identifier.urihttps://doi.org/10.1007/s10489-021-02475-3
dc.identifier.urihttps://hdl.handle.net/20.500.12428/4229
dc.description.abstractPixel-level anomaly localization is a challenging problem due to the lack of abnormal training samples. The existing adversarial network methods attempt to segment anomalies by reconstructing the image then comparing the reconstructed image with the original. However, reconstructing an image with adversarial networks involve complex training procedures and result in long run-times. This paper proposes a simpler and intuitive anomaly localization approach based on generative adversarial networks (GAN) for regular textured images. In the proposed method, a discriminator network generates an anomaly map and is trained by a generator network that generates imitations of anomalous samples. To lower computational costs, strided convolutions are used in the discriminator network to produce anomaly map for pixel blocks instead of individual pixels. Discriminator that is trained in the proposed scheme gains ability to segment the anomalies in images. The experimental results show that the performance of the proposed method is almost equivalent to that of the state-of-the-art methods. Besides, with an accompanying low-cost training phase it is faster and simpler to implement.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAnomaly detectionen_US
dc.subjectDeep learningen_US
dc.subjectGenerative adversarial networken_US
dc.subjectMachine visionen_US
dc.titleAnomaly localization in regular textures based on deep convolutional generative adversarial networksen_US
dc.typearticleen_US
dc.authorid0000-0001-7553-6887en_US
dc.relation.ispartofApplied Intelligenceen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.identifier.volume52en_US
dc.identifier.issue2en_US
dc.identifier.startpage1556en_US
dc.identifier.endpage1565en_US
dc.institutionauthorKaymakçı, Özgur Turay
dc.identifier.doi10.1007/s10489-021-02475-3en_US
dc.relation.tubitakinfo:eu-repo/grantAgreement/TUBITAK/SOBAG/118E607
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorwosidAAZ-6561-2020en_US
dc.authorscopusid23469630000en_US
dc.identifier.wosqualityQ2en_US
dc.identifier.wosWOS:000653602000003en_US
dc.identifier.scopus2-s2.0-85106438903en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record