dc.contributor.author | Memiş, Samet | |
dc.contributor.author | Enginoğu, Serdar | |
dc.contributor.author | Erkan, Uğur | |
dc.date.accessioned | 2023-03-14T11:12:55Z | |
dc.date.available | 2023-03-14T11:12:55Z | |
dc.date.issued | 2021 | en_US |
dc.identifier.citation | Memis, S., Enginoglu, S., & Erkan, U. (2021). Numerical data classification via distance-based similarity measures of fuzzy parameterized fuzzy soft matrices. IEEE Access, 9, 88583-88601. doi:10.1109/ACCESS.2021.3089849 | en_US |
dc.identifier.issn | 2169-3536/- | |
dc.identifier.uri | https://hdl.handle.net/20.500.12428/3793 | |
dc.description | FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ
Scopus | en_US |
dc.description.abstract | In this paper, we first define eight pseudo-metrics and eight pseudo-similarities based on these pseudo-metrics overfpfs-matrices. We then propose a new classification algorithm, i.e. Fuzzy Parameterized Fuzzy Soft Euclidean Classifier (FPFS-EC), based on Euclidean pseudo-similarity. After that, we compare FPFS-EC with Support Vector Machines (SVM), Fuzzy k-Nearest Neighbor (Fuzzy kNN), Fuzzy Soft Set Classifier (FSSC), FussCyier, Fuzzy Soft Set Classification Using Hamming Distance (HDFSSC), and Fuzzy kNN Based on the Bonferroni Mean (BM-Fuzzy kNN) in terms of the performance criteria - namely accuracy, precision, recall, macro F-score, and micro F-score - and running time by using 18 real-world datasets in the UCI machine learning repository. The results show that FPFS-EC performs better in the occurrence of the 13 of 18 datasets in question than SVM, Fuzzy kNN, FSSC, FussCyier, HDFSSC, and BM-Fuzzy kNN. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Fuzzy Sets | en_US |
dc.subject | Soft Sets | en_US |
dc.subject | Fpfs-Matrices | en_US |
dc.subject | Similarity Measure | en_US |
dc.subject | Classification | en_US |
dc.subject | Supervised Learning | en_US |
dc.title | Numerical Data Classification via Distance-Based Similarity Measures of Fuzzy Parameterized Fuzzy Soft Matrices | en_US |
dc.type | article | en_US |
dc.authorid | 000-0002-0958-5872 | en_US |
dc.authorid | 0000-0002-7188-9893 | en_US |
dc.relation.ispartof | IEEE Access | en_US |
dc.department | Fakülteler, Fen Fakültesi, Matematik Bölümü | en_US |
dc.identifier.volume | 9 | en_US |
dc.identifier.startpage | 88583 | en_US |
dc.identifier.endpage | 88601 | en_US |
dc.institutionauthor | Memiş, Samet | |
dc.institutionauthor | Enginoğu, Serdar | |
dc.identifier.doi | 10.1109/ACCESS.2021.3089849 | en_US |
dc.relation.tubitak | info:eu-repo/grantAgreement/TUBITAK/SOBAG/1649B031905299 | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.authorwosid | AAA-6139-2020 | en_US |
dc.authorwosid | K-1181-2012 | en_US |
dc.authorscopusid | 57211003875 | en_US |
dc.authorscopusid | 35772373300 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.identifier.wos | 000673577800001 | en_US |
dc.identifier.scopus | 2-s2.0-85117576628 | en_US |