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Abstract
Recently, usefulness of the noninteger principal quantum numbers for Bessel type 
orbitals was discussed by Weniger in (Adv Quant Chem 83:209–237, 2021). In this 
study, we analyzed the applicability and numerical accuracy of basis sets of nonin-
teger Bessel type orbitals to electronic structure calculations. Both numerical and 
analytical approaches are applied to two-electron atomic systems. The results of the 
numerical test demonstrated the potential of the noninteger values of principal quan-
tum number for the improving of Bessel type functions approach in use of LCAO 
methods. Nevertheless, the analytical approach is still not suitable and in develop-
ment and needs to be investigated further.The performance of the presented basis 
functions is also compared to the numerical Hartree–Fock results.

Keywords Bessel type orbital · Noninteger principal quantum number · LCAO 
methods · Basis function

1 Introduction

In studies of the electronic structure of many electron systems, the basis sets expan-
sions or LCAO methods are the fundamental for the solution of Hartree–Fock-
Roothaan (HFR) and advance correlation methods. One of the major factors of these 
models that should be considered in performing the LCAO calculations is the selec-
tion of basis functions [2–9]. The selection of the most appropriate basis functions 
for a given problem is significantly important and not always clear how to choose 
basis set in LCAO approaches. Therefore, many different basis functions have been 
proposed and applied to various problems in quantum chemistry. During the past 
decade, there have been also an increasing interest and made many efforts in the 
construction of alternative and efficient basis functions especially suited for accurate 

 * M. Ertürk 
 merturk@comu.edu.tr

1 Department of Physics, Faculty of Sciences, Çanakkale Onsekiz Mart University, 
17100 Çanakkale, Türkiye

http://crossmark.crossref.org/dialog/?doi=10.1007/s10910-023-01484-6&domain=pdf
http://orcid.org/0000-0002-7039-1970


1673

1 3

Journal of Mathematical Chemistry (2023) 61:1672–1683 

calculations of few electron systems [10–18]. As desired features, the correct cusp 
condition at the origin and exponential decay at infinity are essential as a measure 
of the quality of calculations for correct description of the wave function [19, 20]. 
Although Gaussian type orbitals (GTOs) are at a disadvantage, namely improper 
cusp condition and long-range behavior, it should be emphasized that the majority 
of calculations of the electronic structure of atoms and molecules have been done 
using GTOs.

For accurate description of one electron wave functions, a careful choice of basis 
functions is required in HFR or LCAO methods. It is well known that the natural 
choice of accurate and reliable basis functions in HFR method is the exponential 
type orbitals (ETOs). In the HFR approximation, Slater type orbitals (STOs) are the 
simplest analytical and suitable basis functions among the other ETOs because they 
represent the correct behavior of the electron-nucleus cusp condition and the expo-
nential decay at large distances [21]. It should be also noted that the quality of one 
electron wave functions can be easily improved by increasing the number of basis 
functions in LCAO approaches. Other way to improve the quality of wave functions 
is modifying the radial part of wave functions. Therefore, there are many modifica-
tions that have been proposed on the radial part of wave functions which aim to 
improve the description of one electron basis functions.

Unfortunately, there are some restrictions on basis functions used in LCAO cal-
culations to avoid computational problems. When one uses LCAO method, the use 
of complete and orthonormal functions in the approximation led to some restrictions 
on the radial part of chosen basis functions. It is well known that there have been 
many efforts to remove these restrictions. There are mainly two ways to remove the 
restrictions. Firstly, Parr [22] introduced noninteger principal quantum numbers for 
Slater type orbitals (NSTOs) instead of integer ones STOs in LCAO approaches. 
Secondly, approach is suggested by Koga and Kanayama [23] in which exponen-
tial part of radial basis functions modified by the generalized exponential functions 
(GETOs). The aim of all these approaches is to fulfill the necessary performance 
requirements in LCAO calculations.

The more recently, we have also proposed some improvements on STOs and 
NSTOs functions to increase the efficiency and accuracy of LCAO calculations 
[24–27]. These works were also extended to Bessel type orbitals (BTOs) [28–30]. 
BTOs are advantageous in Fourier transform (FT) methods, as pointed out in 
[31–33] and later emphasized by Weniger [34]. The modifications of BTOs would 
also have a simple FT, provided the positive exponents are restricted to finite values. 
Clearly, this type of additional flexibility must lead to variationally improved results 
as in the case of NSTOs and GETOs. However, we found that in literature there is 
no study reported related to the use noninteger principal quantum numbers for BTOs 
(NBTOs).

The aim of this work is to examine the applicability the noninteger principal 
quantum numbers in BTOs and compare their performances in LCAO calcula-
tions. To determine the quality and accuracy of the one electron wave functions, 
we have calculated total energies of atomic systems using numerical and analytical 
approaches. Our calculations for the total energy have been restricted to two electron 
systems. Hartree atomic units are used throughout this work.
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2  General definitions and computational method

It is well known that the standard BTOs can be expressed as follows [35, 36]

here, Nql� and k̂q−1∕2(�r) are normalization constant and reduced Bessel func-
tion (RBF), respectively. Slm(�,�) is a complex or real spherical harmonic and the 
parameter 𝜁 > 0 is a screening constant. The RBF is defined as follow:

where q is unconventional indices expressed as q = n − l . Here, n and l are the prin-
cipal and angular quantum numbers, respectively.

Conventional integer BTOs assume that the principal quantum number n in Eq. (1) 
is positive integer. By removing this restriction on the principal quantum number n , 
noninteger principal quantum number can be defined as a new variational parameter � . 
Hence, noninteger BTOs (NBTOs) can be defined as [1]

where � is the variational parameter as used in the NSTOs calculations [22–25]. 
Here, N�l� is the normalization constant and k̂�−1∕2(�r) is the RBF of arbitrary order 
� . In this equation the RBF is defined by the modified Bessel function of second 
kind, denoted by K�−1∕2(�r) and �-th order, with𝜈 > 0 . The RBF of arbitrary order � 
can also be defined as follow

and where K�−1∕2(�r) can be expressed as [37]

with the coefficients

that contain Lah numbers, denoted by L(n, i) satisfying L(0, 0) = 1;L(n, 0) = 0 and 
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when Eqs.  (6, 7) are inserted into Eq.  (3), the analytic NBTOs (ANBTOs) can be 
expressed as follow

The reason is that new NBTOs and ANBTOs is more general than the approach 
in Eq. (1) due to the extra degree of freedom introduced by the parameter � . In the 
analytical expressions ANBTOs obtained, the k value is used to provide practical 
calculation opportunity instead of the infinite value, which is the upper limit of the 
sum in the modified Bessel function of second kind in Eq. (5). All the parameters 
occurring in NBTOs and ANBTOs were variationally optimized with the help of 
Newton method. To avoid local minimums, optimization process has been per-
formed using different initial values for all nonlinear parameters.

3  Numerical results and discussion

In this study, by the use of NBTOs and ANBTOs within minimal basis sets approxi-
mation, the HFR calculations have been performed for the ground states of two 
electron atomic systems. Both numerical NBTOs and analytic ANBTOs approaches 
have been applied to atomic HFR calculations. The results of the examination of the 
usefulness of both approaches have been compared and presented. In order to show 
the precision and accuracy of NBTOs results, we have been compared the perfor-
mance between both basis sets and other standard basis sets used in HFR calcula-
tions. Some orbital expectation values, energy of isoelectronic systems and ioniza-
tion potential values have been calculated and compared to other basis sets used in 
literature and available experimental values for more detail analysis.

Table 1 summarizes the HFR total energies obtained with optimized basis sets of 
NBTOs for the ground-state atoms and ions: He, H− and Li+ systems. As can be 
seen from this table, the NBTOs total energy results are slightly better than those of 
conventional BTOs [36] and NSTOs [38] results. Total energy errors with respect to 
the results of numerical Hartree–Fock (NHF) total energies [39] ΔENBTOs−NHF are 

(8)Bm
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Table 1  NBTOs total energies 
(
E
NBTOs

, signreversed
)
 and total energy differences of NBTOs from the 

aBTOs 
(
ΔE

BTOs−NBTOs

)
 , the bNSTOs 

(
ΔE

NSTOs−NBTOs

)
 and cNHF 

(
ΔE

NBTOs−NHF

)
 results for the ground 

states of two electron atomic systems (in a.u.)

a BTOs HFR total energy results taken from [36]
b NSTOs HFR total energy results taken from [38]
c NHF HFR total energy results taken from [39]

System E
NBTOs

ΔE
BTOs−NBTOs ΔE

NSTOs−NBTOs ΔE
NBTOs−NHF

He 2.85851270 0.01085645 0.00430420 0.00316730
H− 0.48292042 0.01026417 0.00404618 0.00500932
Li+ 7.23365134 0.01099509 0.00435660 0.00276386
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also given in these tables. It is observed that the errors for the total energies of stud-
ied systems are similar with respect to NHF values. The description of the cationic 
system is more notable. The virial ratioV =

⟨V̂⟩
⟨T̂⟩

 , optimal noninteger quantum num-
bers ( � ) and the screening parameters ( � ) for NBTOs basis sets are also given in 
Table 2. Here, the T̂  and V̂  are the kinetic-energy operator, and the potential energy 
operator, respectively. We also compared NBTOs results to more effective noninte-
ger double-zeta STOs (NDSTOs) basis set results [40] to analyze the general behav-
ior and the quality of the NBTOs basis sets. In Table 3, we list the difference of total 
energy results in miliHartree for He and  Li+ systems between the NBTOs and NDS-
TOs basis sets. Cationic system is again the more accurate one. Unfortunately, there 
is no enough double-zeta data for ionic systems available yet to compare and deter-
mine the quality of NBTOs basis sets.

When we used the ANBTOs as basis functions for HFR calculations, we have 
analytical approach to compare and increase the computational efficiency of 
NBTOs. In this approach, to reduce the computational time for the calculation of 
matrix elements and optimization process in HFR procedure, the summation in 
Eq. (8) was truncated at some values of k = 2–10 for the total energy calculation 
of He atom. The optimized nonlinear parameters have been taken from NBTOs 
basis sets calculation as � = 0.85768417 and � = 1.52187293 . In Table 4, we list 
the total energy values for He atom to analyze on the behavior of energy conver-
gence and efficiency of computational cost. As can be seen from the Table 4, the 
convergence of energy values is doubtful and problematic. A much larger expan-
sion for the parameter k is necessary to reach the smoothly converges and get 
reliable accurate total energy values. Therefore, we also searched the error for 
convergence behavior in ANBTOs approach. Thus, the convergence behavior has 
been also checked by the use of two electron and kinetic energy integrals with 

Table 2  Optimum NBTOs parameters; virial ratio (V, sign reversed), noninteger quantum numbers ( � ) 
and screening parameters ( � ) for the ground states of two electron atomic systems

System V � �

He 2.00000002 0.85768417 1.52187293
H− 2.00000001 0.72312035 0.55194138
Li+ 2.00000000 0.90460636 2.51268625

Table 3  The NBTOs total energy errors (in mhartree) relative to the aNDSTOs basis sets 
( ΔE

NBTOs−NDSTOs ) for the ground state of two electron atomic systems

a NDSTOs HFR total energy results taken from Ref [40]

Atom ΔE
NBTOs−NDSTOs

He 3.161
Li+ 2.761
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the same nonlinear parameters � = 0.85768417 and � = 1.52187293 for ANBTOs 
basis sets. The differences of two electron integral values ΔTEI for ANBTOs 
basis sets relative to the exact numerical two electron integral values obtained 
from NBTOs basis sets are given in Table 5. Similarly, the differences of kinetic 
energy integral values ΔKEI for ANBTOs basis sets relative to the exact numeri-
cal kinetic energy integral values obtained from NBTOs basis sets are given in 
Table 6. Unfortunately, in both cases there are no regular convergence behavior 

Table 4  ANBTOs total energies 
( E , signreversed ), optimized 
values of noninteger principal 
quantum numbers ( � ) and 
orbital exponents ( � ) in single-
zeta approach for the ground 
state He atom (in a.u.)

Atom k � � E

He 2 0.85768417 1.52187293 2.46560769
3 2.29593363
4 2.20351887
5 2.12344552
6 2.05191448
7 1.98725627
8 1.92846539
9 1.87346298
10 1.70332016

Table 5  Errors ΔTEI in 
numerical values of two electron 
integral for He atom

k � � ΔTEI

2 0.85768417 1.52187293 − 0.39548042
3 − 0.31172811
4 − 0.37397940
5 − 0.42505097
6 − 0.46602445
7 − 0.49966135
8 − 0.52807637
9 − 0.55140008
10 − 0.45231308

Table 6  Errors ΔKEI in 
numerical values of kinetic 
energy integral for He atom

k � � ΔKE

2 0.85768417 1.52187293 − 0.51660270
3 − 0.26929703
4 − 0.28634355
5 − 0.30791810
6 − 0.32802799
7 − 0.34623881
8 − 0.36273824
9 − 0.37777375
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obtained. The huge fluctuation of the numerical values of integrals must be con-
sidered for further research. Therefore, at this moment, there is not enough evi-
dence to support the use of ANBTOs basis sets in HFR calculations.

To further investigate of the applicability and accuracy of NBTOs, some radial 
expectation values of 1 s orbital ⟨rk⟩1s ( k = −2,−1, 1, 2 ) have been also calculated 
and compared with the results calculated using the extended basis set of STOs 
[39] for the ground states of He,  H− and  Li+. In Table 7, these comparative results 
are given. Here, extended basis sets of STOs results can be seen as NHF results 
for orbital moments. Orbital energy results are also given in this table. The NBTOs 
relative errors with respect to the extended basis sets of STOs showed that the most 
accurate results can be achieved for the ⟨r−1⟩ values. In this table, it was also found 
that the cation values for the orbital moments are more accurate than anions.

Moreover, the performance of the NBTOs basis sets for the isoelectronic series 
of He atom is examined. Table 8 summarizes the HFR total energies obtained with 
optimized basis sets of NBTOs for the ground state of isoelectronic series of He. In 
order to see the improvement of the proposed NBTOs basis sets, comparison has 
been made with the NHF results [41]. To more clearly see the effect of NBTOs basis 
sets among different basis sets used in literature, a more quantitative comparison 
is also made with results calculated from standard BTOs.(ΔEBTOs−NHF) and NSTOs 
[40] (ΔE

NSTOs−NHF
) basis sets with respect to NHF values [41]. We should empha-

size that the accuracy of the NBTOs ( ΔE
NBTOs−NHF

) basis sets approximately 6 
times and 3 times more accurate than the BTOs and NSTOs relative to the NHF val-
ues. It is observed that the variation of total energy error relative to the NHF values 
is negligible when the atomic number increases in isoelectronic series. In addition 
to this, it is clear to see in Fig.  1 that the effect of noninteger principal quantum 
number in HFR calculations is significant. The performance of the NBTOs basis 
sets surpass the basis sets of standard BTOs and the NSTOs as can be seen in Fig. 1.

As a last comparison, as a physical property, ionization potential energy values 
for isoelectronic series of He atom have been calculated with standard BTOs and 
NBTOs to see the effectiveness of non-integral principal quantum numbers used in 
BTOs. The results of comparison with respect to the experimental values [42] are 
given in Fig. 2. In this case, the NBTOs values are slightly better than the BTOs but 
not significantly different.

As can be seen from the numerical tables, the NBTOs definition, which achieve 
double-zeta accuracy, lead to a significant gain in the HFR total energy calculations. 
The data obtained according to the upper limit k value in Eq. (8) for ANBTOs basis 
sets should definitely be examined more deeply to determine their applicability in 
further studies.
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4  Conclusion

In this work, we comparatively report the accuracy and computational efficiency 
of NBTOs and ANBTOs approaches in HFR method. The numerical test for two 
electron system and their isoelectronic series shows the superior performance of the 

Table 8  NBTOs ( E
NBTOs

 ) total energies (sign reversed) and energy differences of BTOs ( ΔE
BTOs−NHF ), 

aNSTOs ( ΔE
NSTOs−NHF ), NBTOs ( ΔE

NBTOs−NHF ) from the bNHF values for the isoelectronic series of He 
atom (in a.u.)

a NSTOs HFR total energy results taken from [40]
b NHF HFR total energy results taken from [41]

Atom Z E
NBTOs

ΔE
BTOs−NHF ΔE

NSTOs−NHF ΔE
NBTOs−NHF

He 2 2.858512695 0.014023746 0.007471499 0.0031673
Li+ 3 7.233651344 0.013758951 0.007120463 0.0027639
Be+2 4 13.60871185 0.01364318 0.006965295 0.0025876

B+3 5 21.98374558 0.01357822 0.006877785 0.0024889

C+4 6 32.35876704 0.01353663 0.006821593 0.0024258

N+5 7 44.73378190 0.01350771 0.006782451 0.0023821

O+6 8 59.10879278 0.01348645 0.006753633 0.0023499

F+7 9 75.48380109 0.01347016 0.00673153 0.0023253

Ne+8 10 93.85880765 0.01345727 0.00671402 0.0023059

Na+9 11 114.2338130 0.01344685 0.0022901

Mg+10 12 136.6088173 0.01343775 0.0022771
Al+11 13 160.9838210 0.01343095 0.0022662

Si+12 14 187.3588241 0.01342475 0.0022569

P+13 15 215.7338268 0.01341935 0.0022488

S+14 16 246.1088292 0.01341475 0.0022418

Cl+15 17 278.4838312 0.01341065 0.0022357

Ar+16 18 312.8588331 0.01340705 0.0022302

K+17 19 349.2338347 0.01340375 0.0022253

Ca+18 20 387.6088362 0.01340085 0.0022209
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Fig. 1  The energy differences ΔE between E
BTOs

 , E
NSTOs

 [40] and E
NBTOs

 as a function of atomic number 
Z for the isoelectronic series of He atom

Fig. 2  The ionization potential differences ΔE (in MJ/mol) between E
NBTOs

 , E
BTOs

 and experimental val-
ues [42] as a function of atomic number Z for the isoelectronic series of He atom
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NBTOs basis sets and its applicability to LCAO approach. The feasibility and the 
efficiency of the ANBTOs approach also tested. More investigation should be con-
sidered on the applicability of analytical approach to reduce the computational cost 
and extend the applicability of ANBTOs to few electron systems [43, 44].
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