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ABSTRACT In this paper, we first define eight pseudo-metrics and eight pseudo-similarities based on these
pseudo-metrics over fpfs-matrices. We then propose a new classification algorithm, i.e. Fuzzy Parameterized
Fuzzy Soft Euclidean Classifier (FPFS-EC), based on Euclidean pseudo-similarity. After that, we compare
FPFS-EC with Support Vector Machines (SVM), Fuzzy k-Nearest Neighbor (Fuzzy kNN), Fuzzy Soft
Set Classifier (FSSC), FussCyier, Fuzzy Soft Set Classification Using Hamming Distance (HDFSSC), and
Fuzzy kNN Based on the Bonferroni Mean (BM-Fuzzy kNN) in terms of the performance criteria - namely
accuracy, precision, recall, macro F-score, and micro F-score - and running time by using 18 real-world
datasets in the UCI machine learning repository. The results show that FPFS-EC performs better in the
occurrence of the 13 of 18 datasets in question than SVM, Fuzzy kNN, FSSC, FussCyier, HDFSSC, and
BM-Fuzzy kNN.

INDEX TERMS Fuzzy sets, soft sets, fpfs-matrices, similarity measure, classification, supervised learning.

I. INTRODUCTION
It is encountered with various types of uncertainty in many
fields, such as medicine, the defense industry, psychology,
finance, astronomy, meteorology, and space sciences. The
concept of soft sets [1] is a standard and practical math-
ematical tool used for modeling such uncertainties. More-
over, research on some generalizations of this concept, such
as fuzzy soft sets (fs-sets) [2], [3], fuzzy parameterized
soft sets [4], fuzzy parameterized fuzzy soft sets [5], soft
matrices [6], fuzzy soft matrices [7], fuzzy parameterized
fuzzy soft matrices (fpfs-matrices) [8], have been introduced.
Due to these generalizations, problems’ modeling contain-
ing fuzzy parameters and/or fuzzy alternatives (objects)
have been possible. Since fpfs-matrices successfully model
problems where both parameters and alternatives are uncer-
tain, they are prominent in their substructures. Further-
more, recent research has studied the configuration of soft
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decision-making methods to fpfs-matrices space [9]–[14],
the simplification of the configured methods [15]–[18],
and their applications to performance-based value assign-
ment (PVA) problem in image denoising [19]–[22]. These
studies have corroborated that fpfs-matrices successfully
model the decision-making problems where both parameters
and alternatives are uncertain.

So far, many studies have been conducted on the concept
of soft sets in such fields as soft algebra [23]–[26], soft
topology [27]–[31], decision-making [32]–[36], similarity
measure [37]–[40], distance measure [38], [41], medical
diagnosis [42], texture classification [43], and data clas-
sification [44]–[46]. Although the studies mentioned above
have been carried out in a great variety of fields, these
studies feature modeled problems often similar to each other
and fictitious, except Fuzzy Soft Set Classifier (FSSC) [44],
FussCyier [45], Fuzzy Soft Set Classification using Ham-
ming Distance (HDFSSC) [46]. In particular, most studies
on decision-making problems and similarity measures have
been applied only to fashioned problems. Since similarity and
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TABLE 1. Properties of the proposed and compared classifiers based on fuzzy sets and fs-sets.

distance measures play an essential role in machine learning
and soft sets can effectively model problems containing
uncertainties, applying similarity and distance measures of
soft sets to real problems should be attended to. For example,
recently, [45] have developed a classification algorithm, i.e.
FussCyier, using a similarity measure of fs-sets for medical
data classification. However, fs-sets cannot model problems
containing fuzzy parameters. That is, fs-sets cannot consider
the question "Which parameters are capable of effectively
classifying data?", but fpfs-sets can. Therefore, it yields more
successful results. Taking all of these into account, fpfs-
sets are more suitable for a highly successful modeling and
outperform the aforementioned. On the other hand, thematrix
representations of fpfs-sets, i.e. fpfs-matrices, are needed to
process a large number of data. To this end, we put forward
distance measures and distance-based similarity measures
of fpfs-matrices and apply the similarity measures to real
numerical data classification. It can be summed up the major
theoretical and applied contributions of the present paper as
follows:
• The concepts of quasi-metric, semi-metric, pseudo-
metric, and metric over fpfs-matrices spaces are defined.
Afterward, eight pseudo-metrics over fpfs-matrices are
proposed.

• The concepts of quasi-similarity, semi-similarity,
pseudo-similarity, and similarity over fpfs-matrices
spaces are defined. Afterward, eight pseudo-similarities
over fpfs-matrices are proposed.

• This study is one of the pioneer studies combining soft
sets and machine learning.

• In opposition to many studies working on a fictitious
problem, this paper has applied the distance-based sim-
ilarity measures of fpfs-matrices to classification prob-
lems in machine learning.

• A new classifier, referred to as Fuzzy Parameterized
Fuzzy Soft Euclidean Classifier (FPFS-EC), employing
Euclidean pseudo-similarity of fpfs-matrices and con-
sidering parameters’ impact on classification, has been
developed.

To demonstrate FPFS-EC’s classification performance,
besides the state-of-the-art fuzzy soft-based classifiers such
as FSSC [44], FussCiyer [45], and HDFSSC [46], we com-
pare it with a well-known fuzzy-based classifier and its

state-of-the-art version, i.e., Fuzzy k-Nearest Neighbor
(Fuzzy kNN) [47] and Fuzzy kNN based on the Bon-
ferroni Mean (BM-Fuzzy kNN) [48], respectively. More-
over, we compare the proposed method with Support Vector
Machines (SVM) [49]. We detail the classifiers in Table 1.
In comparison, we utilize 18 real-world datasets from the
University of California-Irvine (UCI) Machine Learning
Repository [50]. Additionally, we provide a statistical eval-
uation of the comparison results.

The rest of the paper is organized as follows: In Section 2,
we present definitions of fuzzy parameterized fuzzy soft sets
and fuzzy parameterized fuzzy soft matrices. In Section 3,
we define eight pseudo-metrics of fpfs-matrices and in
Section 4, eight pseudo-similarities of fpfs-matrices based
on these pseudo-metrics. In Section 5, we propose FPFS-EC
using the Euclidean pseudo-similarity of fpfs-matrices.
In Section 6, we first compare FPFS-EC with SVM [49],
FSSC [44], FussCyier [45], HDFSSC [46], Fuzzy kNN [47],
and BM-Fuzzy kNN [48] classifiers in terms of running
time and performance criteria, such as accuracy, precision,
recall, macro F-score, and micro F-score by processing 18
numerical datasets in the UCI database. We then present
the statistical analyses and their results. Finally, we provide
the conclusive remarks and make some suggestions for fur-
ther research. This study is a part of the first author’s PhD
dissertation.

II. PRELIMINARIES
In this section, we present some of the basic definitions
needed for the following sections. Throughout this paper, let
E be a parameter set, F(E) be the set of all fuzzy sets over E ,
and µ ∈ F(E). Here, µ := {µ(x)x : x ∈ E}.
Definition 1 [5]: Let U be a universal set, µ ∈ F(E),

and α be a function from µ to F(U ). Then, the set{
(µ(x)x, α(µ(x)x)) : x ∈ E

}
, the graphic of α, is called a fuzzy

parameterized fuzzy soft set (fpfs-set) parameterized via E
over U (or briefly over U).

From now on, the set of all fpfs-sets over U is denoted by
FPFSE (U ). In FPFSE (U ), since the graph(α) and α generate
each other uniquely, the notations are interchangeable. There-
fore, as long as it causes no confusion, we denote a fpfs-set
graph(α) by α.
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Example 2: Let E = {x1, x2, x3} and U = {u1, u2, u3}.
Then,

α =
{
(1x1, {0.5u1,0.2 u2,0.4 u3}), (0.2x2, {0.1u1,0.1 u2,0.8 u3}),

(0.4x3, {1u1,0.5 u2,1 u3})
}

and

β =
{
(0.1x1, {0.6u1,1 u2,0.7 u3}), (0.9x2, {0.8u1,1 u2,0.3 u3}),

(0.7x3, {1u1,0.6 u2,0.3 u3})
}

are two fpfs-sets over U.
Definition 3 [8]: Let α ∈ FPFSE (U ). Then, [aij] is called

the fpfs-matrix of α and is defined by

[aij] :=



a01 a02 a03 . . . a0n . . .

a11 a12 a13 . . . a1n . . .
...

...
...

. . .
...

...

am1 am2 am3 . . . amn . . .
...

...
...

. . .
...

. . .


such that for i ∈ {0, 1, 2, · · · } and j ∈ {1, 2, · · · },

aij :=

{
µ(xj), i = 0
α(µ(xj)xj)(ui), i 6= 0

Here, if |U | = m − 1 and |E| = n, then [aij] has order
m× n.
Hereinafter, the set of all fpfs-matrices parameter-

ized via E over U is denoted by FPFSE [U ] and let
[aij], [bij], [cij] ∈ FPFSE [U ], Im := {1, 2, 3, . . . ,m}, and
I∗m := {0, 1, 2, . . . ,m}.
Example 4: The fpfs-matrices of α and β provided in

Example 2 are as follows:

[aij] =


1 0.2 0.4
0.5 1 1
0.2 0.1 0.5
0.4 0.8 1

 and

[bij] =


0.1 0.9 0.7
0.6 0.8 1
1 1 0.6
0.7 0.3 0.3


Definition 5 [8]: Let [aij] ∈ FPFSE [U ]. For all i and j,

if aij = λ, then [aij] is called λ-fpfs-matrix and is denoted
by [λ]. Here, [0] and [1] are called empty fpfs-matrix and
universal fpfs-matrix, respectively.
Definition 6 [8]: Let [aij], [bij] ∈ FPFSE [U ]. For all i

and j,
If aij = bij, then [aij] and [bij] are called equal fpfs-
matrices and is denoted by [aij] = [bij].
If aij ≤ bij, then [aij] is called a submatrix of [bij] and is
denoted by [aij]⊆̃[bij].
If [aij]⊆̃[bij] and [aij] 6= [bij], then [aij] is called a proper
submatrix of [bij] and is denoted by [aij](̃[bij].

Example 7: Let E and U be as in Example 4 and let [cij] ∈
FPFSE [U ] such that

[cij] =


1 1 0.8
0.9 1 1
1 1 0.7
0.8 0.9 1


Then, [aij]⊆̃[cij], [bij]⊆̃[cij], and [aij]*̃[bij].

III. DISTANCE MEASURES OF FUZZY PARAMETERIZED
FUZZY SOFT MATRICES
In this section, we first define concepts of quasi-metric, semi-
metric, pseudo-metric, and metric over FPFSE [U ]. Our goals
herein are both to contribute theoretically to the soft set
theory and to avail of fpfs-matrices in classification problems
in machine learning. The metrics and similarities of fpfs-
matrices yield advantages of using the modeling ability of
fpfs-matrices.
Definition 8: Let d : FPFSE [U ] × FPFSE [U ] → R be

a mapping. Then, for all [aij],[bij],[cij] ∈ FPFSE [U ], d is
quasi-metric over FPFSE [U ] if and only if d satisfies the
following properties:
i) d([aij], [bij]) = 0⇔ [aij] = [bij]
ii) d([aij], [bij]) ≤ d([aij], [cij])+ d([cij], [bij])
Definition 9: Let d : FPFSE [U ] × FPFSE [U ] → R

be a mapping. Then, for all [aij],[bij],[cij] ∈ FPFSE [U ], d
is semi-metric over FPFSE [U ] if and only if d satisfies the
following properties:
i) d([aij], [bij]) = 0⇔ [aij] = [bij]
ii) d([aij], [bij]) = d([bij], [aij])
Definition 10: Let d : FPFSE [U ] × FPFSE [U ] → R be

a mapping. Then, for all [aij],[bij],[cij] ∈ FPFSE [U ], d is
pseudo-metric over FPFSE [U ] if and only if d satisfies the
following properties:
i) d([aij], [aij]) = 0
ii) d([aij], [bij]) = d([bij], [aij])
iii) d([aij], [bij]) ≤ d([aij], [cij])+ d([cij], [bij])
Definition 11: Let d : FPFSE [U ] × FPFSE [U ] → R be

a mapping. Then, for all [aij],[bij],[cij] ∈ FPFSE [U ], d is
metric over FPFSE [U ] if and only if d satisfies the following
properties:
i) d([aij], [bij]) = 0⇔ [aij] = [bij]
ii) d([aij], [bij]) = d([bij], [aij])
iii) d([aij], [bij]) ≤ d([aij], [cij])+ d([cij], [bij])
Secondly, we propose eight pseudo-metrics over

FPFSE [U ] by using some distance measures of fuzzy soft
sets as given in [37], [38], [41] and present some of their basic
properties.
Proposition 12: The mapping d1 defined by

d1([aij], [bij]) :=
m−1∑
i=1

n∑
j=1

|a0jaij − b0jbij|

is a pseudo-metric over FPFSE [U ] and is called Ham-
ming pseudo-metric. Moreover, the normalized Hamming
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pseudo-metric is as follows:

d̂1([aij], [bij]) :=
1

(m− 1)n

m−1∑
i=1

n∑
j=1

|a0jaij − b0jbij|

Proposition 13: The mapping d2 defined by

d2([aij], [bij]) := max
i∈Im−1

{
max
j∈In
{|a0jaij − b0jbij|}

}
is a pseudo-metric over FPFSE [U ] and is called Chebyshev
pseudo-metric.
Proposition 14: The mapping d3 defined by

d3([aij], [bij]) :=

m−1∑
i=1

n∑
j=1

|a0jaij − b0jbij|2

 1
2

is a pseudo-metric over FPFSE [U ] and is called Euclidean
pseudo-metric. Moreover, the normalized Euclidean pseudo-
metric is as follows:

d̂3([aij], [bij]) :=
1

√
(m− 1)n

m−1∑
i=1

n∑
j=1

|a0jaij − b0jbij|2

 1
2

Proposition 15: The mapping d4 defined by

d4([aij], [bij]) :=
m−1∑
i=1

 n∑
j=1

|a0jaij − b0jbij|2

 1
2

is a pseudo-metric over FPFSE [U ] and is called type-
2 Euclidean pseudo-metric. Moreover, the normalized type-
2 Euclidean pseudo-metric is as follows:

d̂4([aij], [bij]) :=
1

(m− 1)
√
n

m−1∑
i=1

 n∑
j=1

|a0jaij − b0jbij|2

 1
2

Proposition 16: The mapping d5 defined by

d5([aij], [bij]) :=
m−1∑
i=1

max
j∈In
{|a0jaij − b0jbij|}

is a pseudo-metric over FPFSE [U ] and is called Haus-
dorff pseudo-metric. Moreover, the normalized Hausdorff
pseudo-metric is as follows:

d̂5([aij], [bij]) :=
1

m− 1

m−1∑
i=1

max
j∈In
{|a0jaij − b0jbij|}

Proposition 17: The mapping dp6 defined by

dp6 ([aij], [bij]) :=

m−1∑
i=1

n∑
j=1

|a0jaij − b0jbij|p

 1
p

, p ∈ N+

is a pseudo-metric over FPFSE [U ] and is called Minkowski
pseudo-metric. Moreover, the normalized Minkowski pseudo-
metric is as follows:

d̂p6 ([aij], [bij]) :=
1

p
√
(m− 1)n

m−1∑
i=1

n∑
j=1

|a0jaij − b0jbij|p

 1
p

such that p ∈ N+
Proposition 18: The mapping dp7 defined by

dp7 ([aij], [bij]) :=
m−1∑
i=1

 n∑
j=1

|a0jaij − b0jbij|p

 1
p

, p ∈ N+

is a pseudo-metric over FPFSE [U ] and is called type-
2 Minkowski pseudo-metric. Moreover, the normalized type-
2 Minkowski pseudo-metric is as follows:

d̂p7 ([aij], [bij]) :=
1

(m− 1) p
√
n

m−1∑
i=1

 n∑
j=1

|a0jaij − b0jbij|p

 1
p

such that p ∈ N+
Proposition 19: The mapping dp8 defined by

dp8 ([aij], [bij]) :=

(
m−1∑
i=1

max
j∈In
{|a0jaij − b0jbij|p}

) 1
p

, p ∈ N+

is a pseudo-metric over FPFSE [U ] and is called generalized
Hausdorff pseudo-metric. Moreover, the normalized general-
ized Hausdorff pseudo-metric is as follows:

d̂p8 ([aij], [bij]) :=
1

p
√
(m− 1)

(
m−1∑
i=1

max
j∈In
{|a0jaij − b0jbij|p}

) 1
p

such that p ∈ N+
Proposition 20: For all [aij], [bij] ∈ FPFSE [U ] and p ∈

N+,
i. d1([aij], [bij]) ≤ (m− 1)n
ii. d2([aij], [bij]) ≤ 1
iii. d3([aij], [bij]) ≤

√
(m− 1)n

iv. d4([aij], [bij]) ≤ (m− 1)
√
n

v. d5([aij], [bij]) ≤ (m− 1)
vi. dp6 ([aij], [bij]) ≤

p
√
(m− 1)n

vii. dp7 ([aij], [bij]) ≤ (m− 1) p
√
n

viii. dp8 ([aij], [bij]) ≤
p
√
m− 1

Proof: The proof is straight forward from the proofs of
Proposition 12-19. �
Proposition 21: Let us consider the pseudo-metrics men-

tioned above. Then, the following conditions are held for all
[aij],[bij] ∈ FPFSE [U ], k ∈ {1, 2, 3, 4, 5}, t ∈ {6, 7, 8},
p, r ∈ N+, and p ≤ r.

i. dk ([0], [1]) = 1 and dpt ([0], [1]) = 1
ii. dpt ([aij], [bij]) ≤ d

r
t ([aij], [bij])

Proposition 22: For all [aij], [bij] ∈ FPFSE [U ],
i. d1([aij], [bij]) = d16 ([aij], [bij]) = d17 ([aij], [bij])
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ii. d3([aij], [bij]) = d26 ([aij], [bij])
iii. d4([aij], [bij]) = d27 ([aij], [bij])
iv. d5([aij], [bij]) = d18 ([aij], [bij])

Proposition 23: For all [aij], [bij] ∈ FPFSE [U ] and p ∈
N+,

i. [aij]⊆̃[bij]⊆̃[cij]⇒
(
d1([aij], [bij]) ≤ d1([aij], [cij])∧

d1([bij], [cij]) ≤ d1([aij], [cij])
)

ii. [aij]⊆̃[bij]⊆̃[cij]⇒
(
d2([aij], [bij]) ≤ d2([aij], [cij])∧

d2([bij], [cij]) ≤ d2([aij], [cij])
)

iii. [aij]⊆̃[bij]⊆̃[cij]⇒
(
d3([aij], [bij]) ≤ d3([aij], [cij])∧

d3([bij], [cij]) ≤ d3([aij], [cij])
)

iv. [aij]⊆̃[bij]⊆̃[cij]⇒
(
d4([aij], [bij]) ≤ d4([aij], [cij])∧

d4([bij], [cij]) ≤ d4([aij], [cij])
)

v. [aij]⊆̃[bij]⊆̃[cij]⇒
(
d5([aij], [bij]) ≤ d5([aij], [cij])∧

d5([bij], [cij]) ≤ d5([aij], [cij])
)

vi. [aij]⊆̃[bij]⊆̃[cij]⇒
(
dp6 ([aij], [bij]) ≤ d

p
6 ([aij], [cij])∧

dp6 ([bij], [cij]) ≤ d
p
6 ([aij], [cij])

)
vii. [aij]⊆̃[bij]⊆̃[cij]⇒

(
dp7 ([aij], [bij]) ≤ d

p
7 ([aij], [cij])∧

dp7 ([bij], [cij]) ≤ d
p
7 ([aij], [cij])

)
viii. [aij]⊆̃[bij]⊆̃[cij]⇒

(
dp8 ([aij], [bij]) ≤ d

p
8 ([aij], [cij])∧

dp8 ([bij], [cij]) ≤ d
p
8 ([aij], [cij])

)
Example 24: For [aij] and [bij] provided in Example 4,

d1([aij], [bij]) = 3.0900 d̂1([aij], [bij]) = 0.3433
d2([aij], [bij]) = 0.8800 d3([aij], [bij]) = 1.2425
d̂3([aij], [bij]) = 0.4142 d4([aij], [bij]) = 2.0532
d̂4([aij], [bij]) = 0.3951 d5([aij], [bij]) = 1.7300
d̂5([aij], [bij]) = 0.5767 d36 ([aij], [bij]) = 0.9967
d̂36 ([aij], [bij]) = 0.4791 d37 ([aij], [bij]) = 1.8707
d̂37 ([aij], [bij]) = 0.4323 d38 ([aij], [bij]) = 0.9502
d̂38 ([aij], [bij]) = 0.6589

IV. DISTANCE-BASED SIMILARITY MEASURES OF FUZZY
PARAMETERIZED FUZZY SOFT MATRICES
In this section, we first define concepts of quasi-similarity,
semi-similarity, pseudo-similarity, and similarity over
FPFSE [U ] using pseudo-metrics of fpfs-matrices provided in
Section III. Thus, the modeling success of pseudo-metrics of
fpfs-matrices can be transferred to the classification problems
in machine learning.
Definition 25: Let s : FPFSE [U ] × FPFSE [U ] → R be

a mapping. Then, for all [aij],[bij],[cij] ∈ FPFSE [U ], s is
quasi-similarity over FPFSE [U ] if and only if s satisfies the
following properties:

i) s([aij], [bij]) = 1⇔ [aij] = [bij]
ii) 0 ≤ s([aij], [bij]) ≤ 1

Definition 26: Let s : FPFSE [U ] × FPFSE [U ] → R be
a mapping. Then, for all [aij],[bij],[cij] ∈ FPFSE [U ], s is
semi-similarity over FPFSE [U ] if and only if s satisfies the
following properties:

i) s([aij], [bij]) = 1⇔ [aij] = [bij]
ii) s([aij], [bij]) = s([bij], [aij])

Definition 27: Let s : FPFSE [U ] × FPFSE [U ] → R be
a mapping. Then, for all [aij],[bij],[cij] ∈ FPFSE [U ], s is

pseudo-similarity over FPFSE [U ] if and only if s satisfies the
following properties:
i) s([aij], [aij]) = 1
ii) s([aij], [bij]) = s([bij], [aij])
iii) 0 ≤ s([aij], [bij]) ≤ 1
Definition 28: Let s : FPFSE [U ] × FPFSE [U ] → R

be a mapping. Then, for all [aij],[bij],[cij] ∈ FPFSE [U ],
s is similarity over FPFSE [U ] if and only if s satisfies the
following properties:
i) s([aij], [bij]) = 1⇔ [aij] = [bij]
ii) s([aij], [bij]) = s([bij], [aij])
iii) 0 ≤ s([aij], [bij]) ≤ 1
Secondly, we propose eight pseudo-similarities over

FPFSE [U ] by using the pseudo-metrics of fpfs-matrices
available in Section III and provide some of their basic
properties.
Proposition 29 [51]: The mapping s1 defined by

s1([aij], [bij]) := 1−
1

(m− 1)n

m−1∑
i=1

n∑
j=1

|a0jaij − b0jbij|

is a pseudo-similarity over FPFSE [U ] and is called Ham-
ming pseudo-similarity.

Proof: The proof is straight forward from the proof of
Proposition 12. �
Proposition 30 [52]: The mapping s2 defined by

s2([aij], [bij]) :=1− max
i∈Im−1

{
max
j∈In
{|a0jaij−b0jbij|}

}
is a pseudo-similarity over FPFSE [U ] and is called Cheby-
shev pseudo-similarity.

Proof: The proof is straight forward from the proof of
Proposition 13. �
Proposition 31: The mapping s3 defined by

s3([aij], [bij]) := 1−
1

√
(m− 1)n

m−1∑
i=1

n∑
j=1

|a0jaij−b0jbij|2

 1
2

is a pseudo-similarity over FPFSE [U ] and is called
Euclidean pseudo-similarity.

Proof: The proof is straight forward from the proof of
Proposition 14. �
Proposition 32: The mapping s4 defined by

s4([aij], [bij]) := 1−
1

(m− 1)
√
n

m−1∑
i=1

 n∑
j=1

|a0jaij − b0jbij|2

 1
2

is a pseudo-similarity over FPFSE [U ] and is called type-
2 Euclidean pseudo-similarity.

Proof: The proof is straight forward from the proof of
Proposition 15. �
Proposition 33: The mapping s5 defined by

s5([aij], [bij]) := 1−
1

m− 1

m−1∑
i=1

max
j∈In
{|a0jaij − b0jbij|}
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is a pseudo-similarity over FPFSE [U ] and is called Haus-
dorff pseudo-similarity.

Proof: The proof is straight forward from the proof of
Proposition 16. �
Proposition 34: The mapping sp6 defined by

sp6([aij], [bij]) :=1−
1

p
√
(m− 1)n

m−1∑
i=1

n∑
j=1

|a0jaij−b0jbij|p

 1
p

is a pseudo-similarity over FPFSE [U ] and is called
Minkowski pseudo-similarity. Here p ∈ N+.

Proof: The proof is straight forward from the proof of
Proposition 17. �
Proposition 35: The mapping sp7 defined by

sp7([aij], [bij]) := 1−
1

(m− 1) p
√
n

m−1∑
i=1

 n∑
j=1

|a0jaij−b0jbij|p

 1
p

is a pseudo-similarity over FPFSE [U ] and is called type-
2 Minkowski pseudo-similarity. Here p ∈ N+.

Proof: The proof is straight forward from the proof of
Proposition 18. �
Proposition 36: The mapping sp8 defined by

sp8([aij], [bij]) := 1−
1

p
√
(m− 1)

(
m−1∑
i=1

max
j∈In
{|a0jaij−b0jbij|p}

) 1
p

is a pseudo-similarity over FPFSE [U ] and is called general-
ized Hausdorff pseudo-similarity. Here p ∈ N+.

Proof: The proof is straight forward from the proof of
Proposition 19. �
Proposition 37: Let [aij], [bij] ∈ FPFSE [U ]. Then, for all

[aij], [bij], k ∈ {1, 2, 3, 4, 5}, t ∈ {6, 7, 8}, p, r ∈ N+, and
p ≤ r,

i. sk ([0], [1]) = 0 and spt ([0], [1]) = 0
ii. spt ([aij], [bij]) ≥ s

r
t ([aij], [bij])

Proposition 38: For all [aij], [bij] ∈ FPFSE [U ],
i. s1([aij], [bij]) = s16([aij], [bij]) = s17([aij], [bij])
ii. s3([aij], [bij]) = s26([aij], [bij])
iii. s4([aij], [bij]) = s27([aij], [bij])
iv. s5([aij], [bij]) = s18([aij], [bij])
Proposition 39: For all [aij], [bij], [cij] ∈ FPFSE [U ] and

p ∈ N+,
i. [aij]⊆̃[bij]⊆̃[cij]⇒

(
s1([aij], [cij]) ≤ s1([aij], [bij])∧

s1([aij], [cij]) ≤ s1([bij], [cij])
)

ii. [aij]⊆̃[bij]⊆̃[cij]⇒
(
s2([aij], [cij]) ≤ s2([aij], [bij])∧

s2([aij], [cij]) ≤ s2([bij], [cij])
)

iii. [aij]⊆̃[bij]⊆̃[cij]⇒
(
s3([aij], [cij]) ≤ s3([aij], [bij])∧

s3([aij], [cij]) ≤ s3([bij], [cij])
)

iv. [aij]⊆̃[bij]⊆̃[cij]⇒
(
s4([aij], [cij]) ≤ s4([aij], [bij])∧

s4([aij], [cij]) ≤ s4([bij], [cij])
)

v. [aij]⊆̃[bij]⊆̃[cij]⇒
(
s5([aij], [cij]) ≤ s5([aij], [bij])∧

s5([aij], [cij]) ≤ s5([bij], [cij])
)

vi. [aij]⊆̃[bij]⊆̃[cij]⇒
(
sp6([aij], [cij]) ≤ s

p
6([aij], [bij])∧

sp6([aij], [cij]) ≤ s
p
6([bij], [cij])

)
vii. [aij]⊆̃[bij]⊆̃[cij]⇒

(
sp7([aij], [cij]) ≤ s

p
7([aij], [bij])∧

sp7([aij], [cij]) ≤ s
p
7([bij], [cij])

)
viii. [aij]⊆̃[bij]⊆̃[cij]⇒

(
sp8([aij], [cij]) ≤ s

p
8([aij], [bij])∧

sp8([aij], [cij]) ≤ s
p
8([bij], [cij])

)
Proof: The other proofs are straight forward from the

proof of Proposition 23. �
Example 40: For [aij] and [bij] provided in Example 4,
s1([aij], [bij]) = 0.6567 s2([aij], [bij]) = 0.1200
s3([aij], [bij]) = 0.5858 s4([aij], [bij]) = 0.6049
s5([aij], [bij]) = 0.4233 s36([aij], [bij]) = 0.5209
s37([aij], [bij]) = 0.5677 s38([aij], [bij]) = 0.3411

V. FUZZY PARAMETERIZED FUZZY SOFT EUCLIDEAN
CLASSIFIER (FPFS-EC)
In this section, we first present the definitions and notations
occurring in FPFS-EC. Across the present paper, let D =
[dij]m×(n+1) denotes a data matrix and its last column contains
class labels of the data. Here, m and n stand for the number
of the samples and the number of the attributes in the data
matrix, respectively. (Dtrain)m1×n, (C)m1×1, and (Dtest )m2×n
represent the training matrix, class labels of the train matrix,
and the test matrix obtained from D, respectively such that
m1 + m2 = m. Di−train and Di−test denote ith row of Dtrain
and Dtest , respectively. Similarly, Dtrain−j and Dtest−j denote
jth column of Dtrain and Dtest , respectively. Tm2×1 stands for
assigned class matrix obtained from Dtrain and Dtest . Let Im
denote the set of all unsigned integer numbers from 1 to m,
i.e. Im := {1, 2, . . . ,m}. Similarly, let I∗m := {0, 1, 2, . . . ,m}.
Definition 41: Let u, v ∈ Rn. Then, the Pearson correla-

tion coefficient between u and v is defined by

P(u, v)

:=
n
∑n

i=1 uivi − (
∑n

i=1 ui)(
∑n

i=1 vi)√[
n
∑n

i=1 u
2
i − (

∑n
i=1 ui)2

] [
n
∑n

i=1 v
2
i − (

∑n
i=1 vi)2

]
Definition 42: Let Dtrain has order m1 × n and Cm1×1 be

the class column vector of Dtrain. fw is called the feature
weight vector based on the Pearson correlation coefficient of
Dtrain and is defined by

fwj1 :=
∣∣P (Dtrain−j,C)∣∣, j ∈ In

Definition 43: Let Dtrain has order m1 × n and Dtest has
order m2 × n. D̃train is called the feature fuzzifications of
Dtrain and is defined by

d̃ij−train :=
dij−train −min

r,s
{drj−train, dsj−test }

max
r,s
{drj−train, dsj−test } −min

r,s
{drj−train, dsj−test }

such that i, r ∈ Im1 , s ∈ Im2 , and j ∈ In.
Definition 44: Let Dtrain has order m1 × n and Dtest has

order m2 × n. D̃test is called the feature fuzzifications of Dtest ,
and is defined by

d̃ij−test :=
dij−test −min

r,s
{drj−train, dsj−test }

max
r,s
{drj−train, dsj−test} −min

r,s
{drj−train, dsj−test }

such that r ∈ Im1 , i, s ∈ Im2 , and j ∈ In.
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We then propose a new classification algorithm, i.e. FPFS-
EC, via Euclidean pseudo-similarity defined in Section IV.
FPFS-EC uses the Pearson correlation coefficient to obtain
feature weight based on parameters’ impact on classification.
After that, it constructs two fpfs-matrices, i.e. train fpfs-matrix
and test fpfs-matrix, via normalized train sample, normalized
test sample, and feature weights. Next, the proposed classifier
assigns the class label of the train sample, whose Euclidean
pseudo-similarity to the test sample is at the highest level,
to the test sample. This process proceeds similarly for all the
test samples. Finally, the assigned class matrix of the test
data is constructed. Its algorithm steps (Algorithm 1) and
flowchart (Fig. 1) are as follows:

Algorithm 1 FPFS-EC’s Pseudocode
Input: (Dtrain)m1×n,Cm1×1, and (Dtest )m2×n
Output: Tm2×1

1: procedure FPFSEC(Dtrain, C , Dtest )
2: Compute fw using Dtrain and C
3: Compute feature fuzzification of Dtrain and Dtest ,

i.e., D̃train and D̃test
4: for i from 1 to m2 do
5: Compute the test fpfs-matrix [aij] using fw and
D̃i−test

6: for j from 1 to m1 do
7: Compute the train fpfs-matrix [bij] using fw

and D̃j−train
8: smj1← s3([aij], [bij]) F [smj1] represents

similarity matrix
9: end for

10: w← argmax
j∈Im1

{smj1}

11: ti1← the class of w
12: end for

return Tm2×1
13: end procedure

VI. EXPERIMENTAL STUDY
This section presents the properties of the 18 classification
datasets in the UCI Machine Learning Repository [50].
We then offer five performance metrics for performance eval-
uation in machine learning. Next, we perform some exper-
iments to show that our proposed method is more efficient
than SVM [49], Fuzzy kNN [47], FSSC [44], FussCyier [45],
HDFSSC [46], and BM-Fuzzy kNN [48]. Finally, we provide
the statistical evaluation of the experimental results based on
the Friedman test [53] and the Nemenyi post-hoc test [54].

A. UCI DATASETS AND PERFORMANCE MEASURES
In Table 2, we firstly present the properties of the datasets [50]
used in the simulation herein: ‘‘Breast Cancer Wiscon-
sin (Diagnostic)’’, ‘‘Breast Tissue’’, ‘‘Diabetic Retinopathy
Debrecen’’, ‘‘Immunotherapy’’, ‘‘Breast Cancer Coimbra’’,
‘‘Parkinsons[sic]’’, ‘‘Connectionist Bench (Sonar, Mines
vs. Rocks)’’, ‘‘Wine’’, ‘‘Statlog (German Credit Data)’’,

FIGURE 1. The flowchart of FPFS-EC.

‘‘Hayes-Roth’’, ‘‘Iris’’, ‘‘Mice Protein Expression’’, ‘‘Parkin-
son’s Disease’’, ‘‘Teaching Assistant Evaluation’’, ‘‘Vehi-
cle’’, ‘‘Semeion Handwritten Digit’’, ‘‘Ionosphere’’, and
‘‘Connectionist Bench (Vowel Recognition-Deterding
Data)’’.

We subsequently provide the mathematical notations
of five performance metrics, i.e. accuracy (Acc), preci-
sion (Pre), recall (Rec), macro F-score (MacF), and micro
F-score (MicF), to compare the aforementioned methods.
Let X = {x1, x2, . . . , xn}, Y = {Y1,Y2, . . . ,Yn}, Ŷ =
{Ŷ1, Ŷ2, . . . , Ŷn}, and l be n samples to be classified, ground
truth class sets of the samples, prediction class sets of the sam-
ples, and the number of the class of the samples, respectively.

Acc(Y, Ŷ) :=
1
l

l∑
i=1

TPi + TNi
TPi + TNi + FPi + FNi

Pre(Y, Ŷ) :=
1
l

l∑
i=1

TPi
TPi + FPi

Rec(Y, Ŷ) :=
1
l

l∑
i=1

TPi
TPi + FNi
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TABLE 2. Description of UCI data sets.

MacF(Y, Ŷ) :=
1
l

l∑
i=1

2TPi
2TPi + FPi + FNi

MicF(Y, Ŷ) :=
2
∑l

i=1 TPi
2
∑l

i=1 TPi +
∑l

i=1 FPi +
∑l

i=1 FNi

where TPi, TNi, FPi, and FNi are the number of true positive,
true negative, false positive, and false negative for the class i,
respectively and their mathematical notations are as follows:

TPi :=
∣∣∣{xt | i ∈ Yt ∧ i ∈ Ŷt , 1 ≤ t ≤ l

}∣∣∣
TNi :=

∣∣∣{xt | i /∈ Yt ∧ i /∈ Ŷt , 1 ≤ t ≤ l
}∣∣∣

FPi :=
∣∣∣{xt | i /∈ Yt ∧ i ∈ Ŷt , 1 ≤ t ≤ l

}∣∣∣
FNi :=

∣∣∣{xt | i ∈ Yt ∧ i /∈ Ŷt , 1 ≤ t ≤ l
}∣∣∣

B. SIMULATION RESULTS
In this part of the present study, we focus on the compar-
ison between our proposed FPFS-EC and the well-known
methods, i.e. SVM [49] and Fuzzy kNN [47], and other
the state-of-the-art classifiers based on fuzzy sets or soft
sets, i.e. FSSC [44], FussCyier [45], HDFSSC [46], and
BM-Fuzzy kNN [48].We simulate the algorithms by utilizing
MATLAB R2020b and a workstation with I(R) Xeon(R)
CPU E5-1620 v4 @ 3.5 GHz and 64 GB RAM. Each
classifier is trained and tested by means of the k-fold
cross-validation [55], [56].

In the simulation, we carry out 5-fold cross-validation and
record the mean results for 5 iterations. In each iteration in
cross-validation, the training and testing phase is carried out
independently from other stages. Finally, We repeat this pro-
cess 30 times and obtain the mean accuracy, precision, recall,
macro F-score, micro F-score, and running time results.

Table 3 presents accuracy, precision, recall, macro F-score,
micro F-score, and running time results of the methods
for ‘‘Wisconsin’’, ‘‘Breast Tissue’’, ‘‘Diabetic Retinopa-
thy’’, ‘‘Immunotherapy’’, ‘‘Coimbra’’, ‘‘Parkinsons[sic]’’,
‘‘Sonar’’, ‘‘Wine’’, ‘‘German Credit’’, ‘‘Hayes-Roth’’,
‘‘Iris’’, ‘‘Mice Protein’’, ‘‘Parkinson’s Disease’’, ‘‘Teach-
ing’’, ‘‘Vehicle’’, ‘‘Semeion’’, ‘‘Ionosphere’’, and ‘‘Vowel’’
datasets. In ‘‘Wisconsin’’, ‘‘Parkinsons[sic]’’, ‘‘Wine’’,
‘‘Parkinson’s Disease’’, ‘‘Semeion’’, ‘‘Ionosphere’’, and
‘‘Vowel’’ datasets, FPSEC exhibits the best performance
by about 95% in terms of all the performance metrics.
Especially in ‘‘Parkinsons[sic]’’, ‘‘Parkinson’s Disease’’,
‘‘Hayes-Roth’’, ‘‘Vowel’’ datasets, FPFS-EC outperforms the
others to a great extent. In the case of improving FPFS-EC,
FPFS-EC is believed to be capable of exhibiting better perfor-
mance in these four datasets. In the other datasets too, where
the overall performance results are not over 90%, FPFS-EC
outperforms the others. Besides, in ‘‘Mice Protein’’ dataset,
the performance of FPFS-EC, just as of SVM and HDFSSC,
is 100% as far as the performance metrics are concerned.

FPFS-EC achieves remarkable classification success
thanks to its using Euclidean pseudo-similarity of fpfs-
matrices based on the Pearson correlation coefficient and
evaluating all the train samples separately. On the other hand,
evaluating all the train samples separately results in FPFS-
EC’s running slightly slower than the others. Although FPFS-
EC, in general, seems to operate slightly slower than the other
classifiers except for SVM and BM-Fuzzy kNN, classifying
all the test samples in a considered dataset takes about from
0.00414 to 2.17023 seconds.

Table 4 provides the scores concerning the performance
advantages of FPFS-EC over the other classifiers for all the
datasets. The results show that FPFS-EC produces the best
scores in the datasets in terms of accuracy, precision, recall,
macro F-score, and micro F-score performance. In Table 4,
FPFS-EC performs notably better in ‘‘Parkinsons[sic]’’,
‘‘Parkinson’s Disease’’, and ‘‘Hayes-Roth’’, datasets than
the others do, just as FPFS-EC in Table 3. For example,
in ‘‘Parkinson’s Disease’’ dataset, the accuracy, precision,
recall, macro F-score, and micro F-score values concerning
its performance advantages over the classifier with the nearest
score are 19.24%, 17.50%, 32.75%, 6.40%, and 19.24%,
respectively. Similarly, the values are 11.99%, 15.70%,
16.06%, 16.10%, and 17.98% in ‘‘Hayes-Roth’’ dataset and
8.51%, 7.03%, 18.16%, 14.54%, and 8.51% in ‘‘Parkin-
sons[sic]’’ dataset.

Figure 2 presents the graphical results concerning the
accuracy, precision, recall, macro F-score, micro F-score,
and running time performances of the compared classifiers
in Table 3. As the figure reveals, FPFS-EC outperforms SVM,
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TABLE 3. Comparative results for the datasets.
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TABLE 3. (Continued.) Comparative results for the datasets.
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TABLE 4. FPFS-EC’s performance advantages over the other classifiers for the datasets.
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FIGURE 2. Accuracy (a), Precision (b), Recall (c), Macro F-score (d), Micro F-score (e), and running time (in second) (f) performances of the classifiers
related to Table 3.

Fuzzy kNN, FSSC, FussCyier, HDFSSC, and BM-Fuzzy
kNN when operated in the studied datasets except for 3-5,
12, and 15. Although SVM performs better than the others
in the datasets 3-5, 12, and 15, FPFS-EC generally produces
more reliable classification results than SVM, and the former

operates faster than the latter. Moreover, Fuzzy kNN, FSSC,
FussCyier, and HDFSSC run faster than SVM and FPFS-EC.
However, their performance results are not stable, and they
exhibit a lower classification performance compared to SVM
and FPFS-EC.
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As clear from the mean results in Table 3, 4, and Figure 2,
FPFS-EC is a more efficacious method than SVM, Fuzzy
kNN, FSSC, FussCyier, HDFSSC, and BM-Fuzzy kNN.

C. STATISTICAL EVALUATION
In this subsection, we employ the corrected Friedman
test [53] and the Nemenyi post-hoc test [54] in a manner
recommended by [57] to evaluate whether the overall dif-
ferences in the performance results obtained in view of five
performance metrics and running time are statistically signif-
icant. The Friedman test, a non-parametric test for multiple
hypotheses testing, produces a performance-based ranking of
the algorithms for each data set. Thereby, the rank of 1 refers
to the best performing algorithm, the rank of 2 to the second
best, etc. It assigns average ranks in the event that the ranks
of the algorithms are equal.

Afterward, the Friedman test first compares the average
ranks of the algorithms and secondly calculates the Friedman
statistic χ2

F , distributed according to the χ
2
F distribution with

k−1 degrees of freedom. Here k is the number of algorithms.
If a statistically significant difference is detected in the per-
formance, a post-hoc test should be used to detect which
difference belong to which algorithm. The Nemenyi test is
one of the post-hoc tests commonly used to compare all the
classifiers with each other. In this test, if the average ranks
of the two algorithms occur more than the critical distance,
then the test shows that their performance is considerably
different.

We first calculate the average rank of each algorithm
considered in our experiments with k = 7 and N = 18
since the total number of the methods is 7 and the total
number of the datasets is 18. If the accuracy, precision, recall,
macro F-score, micro F-score, and running time values of
the Friedman test statistic are χ2

F = 55.61,χ2
F = 56.15,

χ2
F = 45.00, χ2

F = 54.31, χ2
F = 55.25, and χ2

F = 98.79,
respectively, with 6 (k − 1) degrees of freedom and the
critical value for the Friedman test [53] given for k = 7
and N = 18 is 12.59 at a significance level of α = 0.05,
we can conclude that the accuracy (55.61 > 12.59), precision
(56.15 > 12.59), recall (45.00 > 12.59), macro F-measure
(54.31 > 12.59), micro F-measure (55.25 > 12.59), and
running time (98.79 > 12.59) values of the studied methods
are significantly different. Now that the null hypothesis is
rejected, we can proceed with a post-hoc test. The Nemenyi
test [54] can be used when all classifiers are compared with
each other [57].

The critical value in our experiments with k = 7 and
α = 0.05 is 2.1228. As a result, the accuracy, precision,
recall, macro F-score, and micro F-score of FPFS-EC are
significantly different from Fuzzy kNN, FSSC, FussCyier,
HDFSSC, and BM-Fuzzy kNNmethods, but its running time
is not significantly different from that of Fuzzy kNN. Fig. 3
presents the critical diagrams generated by the Nemenyi
post-hoc test for the five evaluation measures and running
time.

FIGURE 3. The critical diagrams for the five evaluation measures and
running time: The results from the Nemenyi post-hoc test at
0.05 significance level and average rank scores from the
friedman test.

Fig. 3 shows that the differences between the average
ranks of FPFS-EC and those of the others except for SVM
are higher than the critical distance of 2.1228 in terms
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TABLE 5. Pairwise performance comparison of the classifiers via the
friedman test.

of all the performance metrics, in contrast to the running
time ranks. Besides, Table 5 offers the pairwise comparison
between the classifiers obtained via the critical distances
in the Friedman test. Fig. 3 and Table 5 manifest that
FPFS-EC remarkably outperforms the others in terms of five
performance measures.

VII. EVALUATION OF COMPUTATIONAL COMPLEXITY
This section compares the classifiers’ computational com-
plexity by utilizing big O notation besides their running
time results obtained in 30 runs for the 18 UCI datasets.
As can be observed in Table 3, FPFS-EC in general seems
to operate faster than SVM and BM-Fuzzy kNN and slightly
slower than Fuzzy kNN, FSSC, FussCyier, and HDFSSC.
The underlying cause of its slightly slower running than the
others is that, in the pre-processing step, FPFS-EC employs
all of the training samples while FSSC, FussCyier, and
HDFSSC utilize a class-based mean of the training sam-
ples. Additionally, FPFS-EC’s running time occurs under
1 s for 17 of the 18 datasets (except for ‘‘Semeion’’).
Thanks to its low running time, the proposed classifier can
be employed in real-time applications. From the pseudocode
of FPFS-EC, the computational complexity is O(mn) for
each test sample. Here, m and n are the numbers of the
training samples and attributes, respectively. The computa-
tional complexities of the compared classifiers are provided
in Table 6.

VIII. DISCUSSION
In this section, we discuss FPFS-EC and its classification
performance. The subsections Simulation Results and Sta-
tistical Evaluation corroborate that FPFS-EC has a classi-
fication advantage in the considered datasets over SVM,
Fuzzy kNN, FSSC, FussCyier, HDFSSC, and BM-Fuzzy
kNN. FPFS-EC’s success majorly results from the use
of a pseudo-similarity of fpfs-matrices – i.e., Euclidean
pseudo-similarity – based on parameters’ impact. Euclidean

TABLE 6. Computational complexities of the classifiers.

pseudo-similarity produces a similarity coefficient utilizing
the Pearson correlation between parameters and class labels.
This process provides that more significant parameters affect
the classification phase more profoundly, whereas less sig-
nificant parameters exert less effect. The second is that
FPFS-EC processes training samples separately. On the other
hand, FSSC, FussCyier, and HDFSSC classify the considered
test sample employing the averages of the training samples,
which causes data loss.

IX. CONCLUSION
This paper defined eight pseudo-metrics of fpfs-matrices
and eight pseudo-similarities of fpfs-matrices based on these
pseudo-metrics. Contrary to most of the studies in the lit-
erature working on a fictitious problem, we applied the
similarity measures of fpfs-matrices to actual numerical
data classification. In other words, we developed FPFS-EC
based on the pseudo-similarity of fpfs-matrices for numerical
data classification and compared FPFS-EC with SVM [49],
FSSC [44], FussCyier [45], HDFSSC [46], Fuzzy kNN [47],
and BM-Fuzzy kNN [48]. The results show that FPFS-EC
outperforms the other methods and fpfs-matrices are more
efficacious than fuzzy soft sets for the 18 data sets used
herein. This study is believed to inspire new research on
constructing fpfs-matrices for real-life problems, such as data
classification..

However, since fpfs-matrices can effectively model clas-
sification problems containing uncertainty, further research
should be conducted to focus on them. We foresee that
one way of improving FPFS-EC is to use different simi-
larity measures of fpfs-matrices or define similarity mea-
sures of intuitionistic fuzzy parameterized intuitionistic fuzzy
soft matrices [58]. Another is to employ different soft
decision-making methods constructed by fpfs-matrices, such
as in [9]–[11], [15]–[21], and [59]. The other is to decrease
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the negative effects of the unstable data in the datasets herein
on classification success.

Finally, it should be stated that when the success of a
method is below 90%, the margin of error is unaccept-
able, particularly in medical decision-making. To overcome
this problem and perform a highly reliable diagnosis, con-
sidered methods should be customized according to the
subject.
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APPENDIX
Proof [Proposition 12]: For all [aij],[bij],[cij] ∈ FPFSE [U ],

i. d1([aij], [aij]) =
∑m−1

i=1
∑n

j=1 |a0jaij − a0jaij| =∑m−1
i=1

∑n
j=1 0 = 0

ii. d1([aij], [bij]) =
∑m−1

i=1
∑n

j=1 |a0jaij − b0jbij| =∑m−1
i=1

∑n
j=1 |b0jbij − a0jaij| = d([bij], [aij])

iii. d1([aij], [bij]) =
∑m−1

i=1
∑n

j=1 |a0jaij − b0jbij|

=
∑m−1

i=1
∑n

j=1 |a0jaij − c0jcij

+ c0jcij − b0jbij|

≤
∑m−1

i=1
∑n

j=1 |a0jaij − c0jcij|

+
∑m−1

i=1
∑n

j=1 |c0jcij − b0jbij|

= d1([aij], [cij])+ d1([cij], [bij])
�

Proof [Proposition 13]: For all [aij],[bij],[cij] ∈

FPFSE [U ],

i. d2([aij], [aij]) = max
i∈Im−1

{
max
j∈In
{|a0jaij − a0jaij|}

}
=

max
i∈Im−1

{
max
j∈In
{0}
}
= 0

ii. d2([aij], [bij]) = max
i∈Im−1

{
max
j∈In
{|a0jaij − b0jbij|}

}
=

max
i∈Im−1

{
max
j∈In
{|b0jbij − a0jaij|}

}
= d2([bij], [aij])

iii. d2([aij], [bij]) = max
i∈Im−1

{
max
j∈In
{|a0jaij − b0jbij|}

}
= max

i∈Im−1

{
max
j∈In
{|a0jaij − c0jcij

+ c0jcij − b0jbij|}
}

≤ max
i∈Im−1

{
max
j∈In
{|a0jaij − c0jcij|

+ |c0jcij − b0jbij|}
}

≤ max
i∈Im−1

{
max
j∈In
{|a0jaij − c0jcij|}

+ max
j∈In
{|c0jcij − b0jbij|}

}
≤ max

i∈Im−1

{
max
j∈In
{|a0jaij − c0jcij|}

}
+ max

i∈Im−1

{
max
j∈In
{|c0jcij − b0jbij|}

}
= d2([aij], [cij])+ d2([cij], [bij])

�
Proof [Proposition 14]: For all [aij],[bij],[cij] ∈

FPFSE [U ],

i. d3([aij], [aij]) =
(∑m−1

i=1
∑n

j=1 |a0jaij − a0jaij|
2
) 1

2
=(∑m−1

i=1
∑n

j=1 0
) 1

2
= 0

ii. d3([aij], [bij]) =
(∑m−1

i=1
∑n

j=1 |a0jaij − b0jbij|
2
) 1

2
=(∑m−1

i=1
∑n

j=1 |b0jbij − a0jaij|
2
) 1

2
= d3([bij], [aij])

iii. d3([aij], [bij]) =
(∑m−1

i=1
∑n

j=1 |a0jaij − b0jbij|
2
) 1

2

=

(∑m−1
i=1

∑n
j=1 |a0jaij − c0jcij

+ c0jcij − b0jbij|2
) 1
2

≤

(∑m−1
i=1

∑n
j=1

(
|a0jaij − c0jcij|

+ |c0jcij − b0jbij|
)2) 1

2

≤

(∑m−1
i=1

∑n
j=1 |a0jaij − c0jcij|

2
) 1

2

+

(∑m−1
i=1

∑n
j=1 |c0jcij − b0jbij|

2
) 1

2

= d3([aij], [cij])+ d3([cij], [bij])
�

Proof [Proposition 15]: For all [aij],[bij],[cij] ∈

FPFSE [U ],

i. d4([aij], [aij]) =
∑m−1

i=1

(∑n
j=1 |a0jaij − a0jaij|

2
) 1

2
=∑m−1

i=1

(∑n
j=1 0

) 1
2
= 0
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ii. d4([aij], [bij]) =
∑m−1

i=1

(∑n
j=1 |a0jaij − b0jbij|

2
) 1

2
=∑m−1

i=1

(∑n
j=1 |b0jbij − a0jaij|

2
) 1

2
= d4([bij], [aij])

iii. d4([aij], [bij]) =
∑m−1

i=1

(∑n
j=1 |a0jaij − b0jbij|

2
) 1

2

=
∑m−1

i=1

(∑n
j=1 |a0jaij − c0jcij

+ c0jcij − b0jbij|2
) 1
2

≤
∑m−1

i=1

(∑n
j=1

(
|a0jaij − c0jcij|

+ |c0jcij − b0jbij|
)2) 1

2

≤
∑m−1

i=1

[(∑n
j=1 |a0jaij − c0jcij|

2
) 1

2

+

(∑n
j=1 |c0jcij − b0jbij|

2
) 1

2
]

=
∑m−1

i=1

(∑n
j=1 |a0jaij − c0jcij|

2
) 1

2

+
∑m−1

i=1

(∑n
j=1 |c0jcij − b0jbij|

2
) 1

2

= d4([aij], [cij])+ d4([cij], [bij])
�

Proof [Proposition 16]: For all [aij],[bij],[cij] ∈

FPFSE [U ],

i. d5([aij], [aij]) =
∑m−1

i=1 max
j∈In
{|a0jaij − a0jaij|} =∑m−1

i=1 max
j∈In
{0} = 0

ii. d5([aij], [bij]) =
∑m−1

i=1 max
j∈In
{|a0jaij − b0jbij|} =∑m−1

i=1 max
j∈In
{|b0jbij − a0jaij|} = d5([bij], [aij])

iii. d5([aij], [bij]) =
∑m−1

i=1 max
j∈In
{|a0jaij − b0jbij|}

=
∑m−1

i=1 max
j∈In
{|a0jaij − c0jcij

+ c0jcij − b0jbij|}

≤
∑m−1

i=1 max
j∈In
{|a0jaij − c0jcij|

+ |c0jcij − b0jbij|}

≤
∑m−1

i=1

[
max
j∈In
{|a0jaij − c0jcij|}

+ max
j∈In
{|c0jcij − b0jbij|}

]
=
∑m−1

i=1 max
j∈In
{|a0jaij − c0jcij|}

+
∑m−1

i=1 max
j∈In
{|c0jcij − b0jbij|}

= d5([aij], [cij])+ d5([cij], [bij])
�

Proof [Proposition 17]: For all [aij],[bij],[cij] ∈

FPFSE [U ] and p ∈ N+,

i. dp6 ([aij], [aij]) =
∑m−1

i=1

(∑n
j=1 |a0jaij − a0jaij|

p
) 1
p
=∑m−1

i=1

(∑n
j=1 0

) 1
p
= 0

ii. dp6 ([aij], [bij]) =
∑m−1

i=1

(∑n
j=1 |a0jaij − b0jbij|

p
) 1
p
=∑m−1

i=1

(∑n
j=1 |b0jbij − a0jaij|

p
) 1
p
= dp6 ([bij], [aij])

iii. dp6 ([aij], [bij]) =
(∑m−1

i=1
∑n

j=1 |a0jaij − b0jbij|
p
) 1
p

=

(∑m−1
i=1

∑n
j=1 |a0jaij − c0jcij

+ c0jcij − b0jbij|p
) 1
p

≤

(∑m−1
i=1

∑n
j=1

(
|a0jaij − c0jcij|

+ |c0jcij − b0jbij|
)p) 1p

≤

(∑m−1
i=1

∑n
j=1 |a0jaij − c0jcij|

p
) 1
p

+

(∑m−1
i=1

∑n
j=1 |c0jcij − b0jbij|

p
) 1
p

= dp6 ([aij], [cij])+ d
p
6 ([cij], [bij])

�
Proof [Proposition 18]: For all [aij],[bij],[cij] ∈

FPFSE [U ] and p ∈ N+,

i. dp7 ([aij], [aij]) =
∑m−1

i=1

(∑n
j=1 |a0jaij − a0jaij|

p
) 1
p
=∑m−1

i=1

(∑n
j=1 0

) 1
p
= 0

ii. dp7 ([aij], [bij]) =
∑m−1

i=1

(∑n
j=1 |a0jaij − b0jbij|

p
) 1
p
=∑m−1

i=1

(∑n
j=1 |b0jbij − a0jaij|

p
) 1
p
= dp7 ([bij], [aij])

iii. dp7 ([aij], [bij]) =
∑m−1

i=1

(∑n
j=1 |a0jaij − b0jbij|

p
) 1
p

=
∑m−1

i=1

(∑n
j=1 |a0jaij − c0jcij

+ c0jcij − b0jbij|p
) 1
p

≤
∑m−1

i=1

(∑n
j=1

(
|a0jaij − c0jcij|

+ |c0jcij − b0jbij|
)p) 1p

≤
∑m−1

i=1

[(∑n
j=1 |a0jaij − c0jcij|

p
) 1
p

+

(∑n
j=1 |c0jcij − b0jbij|

p
) 1
p
]

=
∑m−1

i=1

(∑n
j=1 |a0jaij − c0jcij|

p
) 1
p

+
∑m−1

i=1

(∑n
j=1 |c0jcij − b0jbij|

p
) 1
p

= dp7 ([aij], [cij])+ d
p
7 ([cij], [bij])

�
Proof [Proposition 19]: For all [aij],[bij],[cij] ∈

FPFSE [U ] and p ∈ N+,

i. dp8 ([aij], [aij]) =
(∑m−1

i=1 max
j∈In
{|a0jaij − a0jaij|p}

) 1
p

=(∑m−1
i=1 max

j∈In
{0}
) 1

p

= 0
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ii. dp8 ([aij], [bij]) =
(∑m−1

i=1 max
j∈In
{|a0jaij − b0jbij|p}

)1
p

=

(∑m−1
i=1 max

j∈In
{|b0jbij − a0jaij|p}

)1
p

= dp8 ([bij], [aij])

iii. dp8 ([aij], [bij]) =
(∑m−1

i=1 max
j∈In
{|a0jaij − b0jbij|p}

) 1
p

=

(∑m−1
i=1 max

j∈In
{|a0jaij − c0jcij

+ c0jcij − b0jbij|p}
) 1

p

≤

(∑m−1
i=1 max

j∈In
{
(
|a0jaij − c0jcij|

+ |c0jcij − b0jbij|
)p
}

) 1
p

=

(∑m−1
i=1 max

j∈In
{|a0jaij − c0jcij|

+ |c0jcij − b0jbij|}p
) 1

p

≤

(∑m−1
i=1

(
max
j∈In
{|a0jaij − c0jcij|}

+ max
j∈In
{|c0jcij − b0jbij|}

)p) 1
p

≤

(∑m−1
i=1 max

j∈In
{|a0jaij − c0jcij|}p

+ max
j∈In
{|c0jcij − b0jbij|}p

) 1
p

≤

(∑m−1
i=1 max

j∈In
{|a0jaij − c0jcij|}p

) 1
p

+

(∑m−1
i=1 max

j∈In
{|c0jcij − b0jbij|}p

) 1
p

= dp8 ([aij], [cij])+ d
p
8 ([cij], [bij])

�
Proof [Proposition 23]: Let [aij], [bij] ∈ FPFSE [U ].

i. Since [aij]⊆̃[bij]⊆̃[cij], for all i ∈ I∗m and j ∈ In, aij ≤
bij ≤ cij. Therefore, for all i ∈ Im and j ∈ In, a0jaij ≤
b0jbij ≤ c0jcij holds. Then,

b0jbij − a0jaij ≤ c0jcij − a0jaij and

c0jcij − b0jbij ≤ c0jcij − a0jaij

Thus,

|b0jbij − a0jaij| ≤ |c0jcij − a0jaij| and

|c0jcij − b0jbij| ≤ |c0jcij − a0jaij|

Thereafter,

m−1∑
i=1

n∑
j=1

|a0jaij−b0jbij| ≤
m−1∑
i=1

n∑
j=1

|a0jaij−c0jcij| and

m−1∑
i=1

n∑
j=1

|b0jbij − c0jcij| ≤
m−1∑
i=1

n∑
j=1

|a0jaij − c0jcij|

Consequently,

d1([aij], [bij]) ≤ d1([aij], [cij]) and

d1([bij], [cij]) ≤ d1([aij], [cij])

Others can be proved by similar way. �
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