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In this study, we define new semigroup structures using the set SS � a ∈ S|aSa � 0{ } which is called the source of semiprimeness
for a semigroup S with zero element. |SS|−idempotent semigroup, |SS|−regular semigroup, |SS|−reduced semigroup, and
|SS|−nonzero divisor semigroup which are generalizations of idempotent, regular, reduced, and nonzero divisor semigroups in
semigroup theory are investigated, and their basic properties are determined. In addition, we adapt some well-known results in
semigroup theory to these new semigroups.

1. Introduction

Semiprime ideals play a very important role in semigroups.
Since every ring can be considered as a semigroup under
multiplication, we have more generalized theorems of [1].
)e aim of this study is to obtain new semigroup structures
by using the definition of semiprimeness in semigroups in
the sense of the study by Aydın et al. [1]. )ere are different
equivalent definitions of semiprimeness. One of these is, if
aSa � 0 with a ∈ S implies a � 0, then S is called a semiprime
semigroup. In [1], the authors have defined the set SR �

a ∈ R ∣ aRa � 0{ } called source of semiprimeness of ring R

by using the ring version of semiprimeness definition. In
addition, they have obtained new ring and field structures. In
this study, new semigroup structures have been obtained by
using the source set of semiprimeness of semigroups. )ese
structures are investigated, and some results of the semi-
group theory are adapted to the new semigroups.

2. Preliminaries

In semigroup theory, there are many studies on different
semigroup types. Adams examined the properties of semi-
prime semigroups in [2]. In [3], Van Rooyen worked on the
ideals of semigroups. In [4–6], the authors have worked on
reduced, regular, and zero-divisor semigroups. )is article

will bring a different perspective to these various
semigroups.

First, let us give the definitions mentioned in this article
which are frequently used in semigroup theory. )e studies
by Clifford and Preston and Grillet [7, 8] are used for
definitions.

Let (S, ·) be a semigroup. A zero element of a semigroup
S is an element 0 ∈ S, such that 0 · a � a · 0 � 0 for all a ∈ S.
)roughout this study, S will be taken as a semigroup with
zero element. )e e ∈ S element, such that e2 � e, is called an
idempotent element. )e semigroup whose all elements are
idempotent is called an idempotent semigroup. An element
x of a semigroup S is called regular element if there exist at
least one y ∈ S, such that xyx � x. )e semigroup whose all
elements are regular is called a regular semigroup. For a ∈ S,
if there exist n ∈ Z+, such that an � 0 and an− 1 ≠ 0, then a is
called nilpotent. A semigroup without nilpotent elements
other than zero is called a reduced semigroup. An element x

of a semigroup S is called zero divisor element if there exist
0≠y, 0≠ z ∈ S, such that xy � 0 (left zero divisor) and zx �

0 (right zero divisor). S is called the nonzero divisor
semigroup, if there is no nonzero zero divisor element in S.

Now, let us give the definitions of ideal and semiprime
semigroup which are the basis of our article. From [2, 9], the
subset I of semigroup S is called an ideal if IS ⊆ I (right
ideal) and SI ⊆ I (left ideal). One of the equivalent definition
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of the semiprime semigroup, which using this study, is given
as follows: if aSa � 0 with a ∈ S implies a � 0, then S is called
the semiprime semigroup.

3. Results of Different
Types of |SS|− Semigroups

Definition 1. Let S be a semigroup with zero and A be a
nonempty subset of S. )e subset of S,

SS(A) � a ∈ S ∣ aAa � 0{ }, (1)

is called the source of semiprimeness of A in S. For semi-
group S, the notation SS is used instead of SS(S). )en, the
source of semiprimeness of the S semigroup is defined as
follows:

SS � a ∈ S ∣ aSa � 0{ }. (2)

Now, let us examine the basic properties of the source of
semiprimeness of semigroup S. In [1], the set of source of
semiprimeness was investigated for the rings. )e properties
that can be exactly provided for semigroups are given with
reference without proof in this study. First of all, let us
mention some facts that can be easily seen but useful for
understanding the set.

(1) For every semigroup with zero, since 0 ∈ SS(A),
SS(A)≠∅ is provided for every subset A of S

(2) It is easy to see that SA ⊆ SS(A) for the subsemigroup
A of S

(3) For subsets A and B, A⊆B implies SS(B)⊆ SS(A)

([1], Proposition 2.2)

Now, let us investigate the properties of idempotent,
regular, nilpotent, and zero divisor elements. )ese prop-
erties form the basis for defining the new semigroup
structures that we will define in the next section. By using the
results obtained, we will obtain the definitions of the
|SS|−idempotent semigroup, |SS|−regular semigroup,
|SS|−reduced semigroup, and |SS|−nonzero divisor
semigroup.

Lemma 1. Let S be a semigroup, e be an idempotent element,
and x be a regular element, such that xyx � x for y ∈ S.(en,
the following properties are provided.

(1) eSS ⊆ SeS

(2) xySS ⊆ SxyS

(3) If S is an idempotent semigroup, then SS � 0{ }

(4) If S is a regular semigroup, then SS � 0{ }

(5) If a ∈ SS, then a is a nilpotent element
(6) If a ∈ SS, then a is a zero divisor element

Proof

(1) Let ea ∈ eSS. )en, since a ∈ SS, we write aSa � 0.
From this equation, we get

ea(eS)ea � ea(eSe)a ⊆ e(aSa) � 0{ }. (3)

)is gives us ea ∈ SeS. So, eSS ⊆ SeS is provided.
(2) For regular element x, such that xyx � x for y ∈ S,

this implies that xyxy � xy, and xy is an idem-
potent element. From (1), it is clear that xySS ⊆ SxyS.

(3) Let S be an idempotent semigroup and a ∈ SS. Since
aSa � 0, the equation aaa � 0 is satisfied for a ∈ S.
Hence, using a as an idempotent element, we get
a � 0. )en, SS � 0{ }.

(4) Let S be a regular semigroup and x ∈ SS. In this case,
xSx � 0, and there exist y ∈ S, such that xyx � x.
Specially, x � xyx � 0 is provided. )is means that
SS � 0{ }.

(5) If a ∈ SS, then aSa � 0. Since a3 � 0, a is a nilpotent
element.

(6) If 0≠ a ∈ SS, then aaa � 0. )is equation can be
written as a(aa) � 0 and (aa)a � 0. Since 0≠ a, if
aa � 0, then a is a zero divisor element. On the other
hand, if aa≠ 0, then a is also a zero divisor element
specific with a2. □

Using the above Lemma 1, it is easy to see that the
following corollary.

Corollary 1. For semigroup S, the following holds true:

(1) (ere is no idempotent element other than zero in SS

(2) (ere is no regular element other than zero in SS

(3) Every element in SS is nilpotent element
(4) Every element in SS is zero divisor element

Now, we will define different type of |SS|−semigroups.

Definition 2. Let S be semigroup with zero and S≠ SS.

(1) S is called the |SS|−idempotent semigroup if every
element of S − SS is idempotent

(2) S is called the |SS|−regular semigroup if every ele-
ment of S − SS is regular

(3) S is called the |SS|−reduced semigroup if S − SS has
no nilpotent element

(4) S is called the |SS|−nonzero divisor semigroup if S −

SS has neither a left nor a right zero divisor

First, let us mention the basic characteristics properties
of these newly defined semigroups.)e following results can
be easily seen using the definitions.

(1) If S � 0{ }, then SS � 0{ } � S. In this case, since
S − SS � ∅, definitions would be meaningless for the
zero semigroup. Similarly, S − SS � ∅ is provided in
case of S � SS. So, in this case too, the definitions
would be meaningless.

(2) For the elements of a semigroup, “if a is an idem-
potent element, then a is regular element,” “if a is a
nilpotent element, then a is a zero divisor element,”
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and “if a is a nilpotent element, then a is not an
idempotent element” and conditions are always

provided. Using these conditions, the following
properties can be easily seen.

If S is SS


 − idempotent semigroup, then S is SS


 − regular semigroup,

If S is SS


 − idempotent semigroup, then S is SS


 − reduced semigroup,

If S is SS


 − nonzero divisor semigroup, then S is SS


 − reduced semigroup.

(4)

Additional conditions for providing other directions
of relations will be investigated in our study

(3) It is clear that, if S is an idempotent (regular, reduced,
and nonzero divisor) semigroup, thenS is a
|SS|−idempotent (regular, reduced, and nonzero
divisor) semigroup

We will give examples of each of these four semigroups
before proceeding with conclusions. It can also be seen from
these examples that the above relations are one sided.

Example 1. Let the operation table of the semigroup S be
given as follows.

· 0 a b c

0 0 0 0 0

a 0 0 0 0

b 0 0 0 0

c 0 0 0 c

. (5)

Using the table, we get

SS � 0, a, b{ },

S − SS � c{ }.
(6)

Since c2 � c, it is seen that c is idempotent and regular
element of S − SS. So, S is a |SS|−idempotent and |SS|−regular
semigroup. Also, since c is not nilpotent, S is a |SS|−reduced
semigroup. However, c is a zero divisor element for ac � 0
and ca � 0. )us, S is not a |SS|−nonzero divisor semigroup.

Example 2. Let the operation table of the semigroup S be
given as follows.

· 0 a b c

0 0 0 0 0

a 0 b b 0

b 0 b b 0

c 0 0 0 0

. (7)

For the semigroup S, it is easy to see that

SS � 0, c{ },

S − SS � a, b{ }.
(8)

If we investigate elements of S − SS, we see that only b is
an idempotent and regular element. So, S is not a

|SS|−idempotent or |SS|−regular semigroup. Also, since ac �

0 and ca � 0, a and c are the zero divisor elements. )en, S is
not a |SS|−nonzero divisor semigroup. On the other hand, it
is clear that a and b are not nilpotent elements. So, S is a
|SS|−reduced semigroup.

Example 3. Let the operation table of the semigroup S be
given as follows.

· 0 a b c

0 0 0 0 0

a 0 0 a a

b 0 0 b b

c 0 0 c c

. (9)

Now, it turns out that

SS � 0, a{ },

S − SS � b, c{ }.
(10)

It is seen that b and c are the idempotent and regular
elements of S − SS. )en, S is a |SS|−idempotent and a
|SS|−regular semigroup. Also, b and c are nonzero divisors.
)erefore, S is a |SS|−nonzero divisor semigroup. On the
other hand, since a and b are not nilpotent elements, S is also
a |SS|−reduced semigroup.

Example 4. Let the operation table of the semigroup S be
given as follows.

· 0 a b c

0 0 0 0 0

a 0 a b c

b 0 b 0 b

c 0 c b a

. (11)

Using the table, we get

SS � 0, b{ },

S − SS � a, c{ }.
(12)

If we investigate the elements of S − SS, we see that only a

is an idempotent element. )en, S is not a |SS|−idempotent
semigroup. However, since aaa � a and ccc � c, a and c are
the regular elements. So, S is a |SS|−regular semigroup. Also,
a and c are not zero divisor or nilpotent elements.)erefore,
S is a |SS|−nonzero divisor and a |SS|−reduced semigroup.
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Example 5. Consider the semigroup (N, ·). Since

SN � 0{ }, (13)

we get

N − SN � 1, 2, 3, . . .{ }. (14)

In the set N − SN, since only 1 is idempotent and regular,
N is not a |SN|−idempotent or |SN|−regular semigroup. On
the other hand, since there are no zero divisor elements in
N − SN, S is a |SN|−nonzero divisor and |SN|−reduced
semigroup.

Let us now give a proposition and an example about
characterization of the subgroups of these new semigroups.

Proposition 1. Let S be a semigroup and A be a sub-
semigroup of S. (en, the following conditions are satisfied.

(1) If S is a |SS|−idempotent (regular) semigroup, then A

is a |SA|−idempotent (regular) semigroup
(2) If S is a |SS|−reduced (nonzero divisor) semigroup,

then A is a |SA|−reduced (nonzero divisor) semigroup

Proof

(1) If a ∈ A − SA, then a ∈ A and a ∉ SA. )us, we write
a ∈ S and a ∉ SS. )is means that a ∈ S − SS. So,
A − SA ⊆ S − SS. )erefore, since every element in S −

SS is idempotent (regular), every element in A − SA is
an idempotent (regular) element. So, A is a
|SA|−idempotent (regular) semigroup.

(2) We showed that A − SA ⊆ S − SS in (1). So, since
there is no nilpotent (zero divisor) element in S − SS,
there is no nilpotent (zero divisor) element in
A − SA. In this case, A is a |SA|−reduced (nonzero
divisor) semigroup. □

Example 6. Consider the set

M �

x y 0

0 x 0

0 0 x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∣ x, y ∈ R
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (15)

M is a semigroup with zero element by multiplication
operation in matrices. For this semigroup, it is not hard to
see that

SM �

0 y 0

0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∣ y ∈ R
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

M − SM �

x y 0

0 x 0

0 0 x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∣ x, y ∈ R, x≠ 0
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
.

(16)

Since there exist B �
1/x −y/x2 0
0 1/x 0
0 0 1/x

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦ ∈M − SM, such

that ABA � A for each A �

x y 0
0 x 0
0 0 x

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ ∈M − SM, M is a

|SM|−regular semigroup. On the other hand, the elements of
the set M − SM can only be nilpotent elements for x � 0. So,
M is a |SM|−reduced semigroup. Also, it is easy to see thatM

is a |SM|−nonzero divisor semigroup because there is no zero
divisor element in M − SM.

Now, let define the subsemigroup,

A �

x 0 0

0 x 0

0 0 x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∣ x ∈ R
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
, (17)

of semigroup M. From Proposition 1, A is a |SA|−regular,
|SA|−reduced, and |SA|−nonzero divisor semigroup. Indeed,
it is clear that

SA �

0 0 0

0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

A − SA �

x 0 0

0 x 0

0 0 x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∣ x≠ 0
⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
.

(18)

If we investigate A − SA similar to the above, we see that
all elements are regular elements, and there are no nilpotent
or zero divisor elements.

Obviously, the set S − SS does not have to be a sub-
semigroup. )e following proposition shows that the S − SS

set is the subsemigroup with additional conditions for
|SS|−semigroup types. In the next Lemma, the character-
ization of the SS is given for the |SS|−nonzero divisor and
|SS|−reduced semigroups.

Proposition 2. Let S be a semigroup. (en, the following
conditions are satisfied.

(1) If S is a |SS|−nonzero divisor semigroup, then S − SS is
a subsemigroup

(2) If S is a commutative and |SS|−idempotent (regular)
semigroup, then S − SS is a subsemigroup

Proof

(1) Let S be a |SS|−nonzero divisor semigroup. If
x, y ∈ S − SS, then x and y are the nonzero divisors.
)en, element xy is also a nonzero divisor.)is gives
us xy ∈ S − SS. So, S − SS is a subsemigroup.

(2) Note that product of idempotent elements is an
idempotent element, product of regular elements is a
regular element, and product of nilpotent elements is
a nilpotent element in a commutative semigroup. In
this case, if a, b ∈ S − SS, then ab ∈ S − SS for the
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|SS|−idempotent (regular) semigroup S. So, S − SS is a
subsemigroup. □

Lemma 2. If S is a |SS|−nonzero divisor or |SS|−reduced
semigroup, then SS � a ∈ S ∣ a3 � 0 . In addition, if S is a
monoid, then SS � a ∈ S ∣ a2 � 0  is provided for
|SS|−nonzero divisor or |SS|−reduced semigroup S.

Proof. First, let S be a |SS|−nonzero divisor semigroup and
A � a ∈ S ∣ a3 � 0 . )e inclusion SS ⊆A is always pro-
vided. Conversely, let us take an arbitrary element a of A.
Assume that a ∈ S − SS. Since S is a |SS|−nonzero divisor
semigroup, a is a nonzero divisor element. From definition
of the set A, we write 0 � a3 � aa2. Using a as a nonzero
divisor, we get a2 � 0. Similarly, from the equation
0 � a2 � aa, we get a � 0. However, this result leads us to the
a ∉ S − SS contradiction. So the assumption is incorrect, and
thus, a ∈ SS. )en, A⊆ SS is provided.

Now, let S be a |SS|−reduced semigroup. Similar to
above, SS ⊆A is always provided. Conversely, if a ∈ A, then
a3 � 0. )is gives us a is a nilpotent element. Since S is a
|SS|−reduced semigroup, there is no nilpotent element in
S − SS. So, we get a ∈ SS. Hence A⊆ SS is provided.

In addition, if S is a monoid, then there exist 1S ∈ S, such
that a1Sa � a2 � 0 for all a ∈ SS. )is means that SS ⊆A.
Also, similar to the above proof, we obtain A⊆ SS. □

In this part of our study, we will give the results about
(Zn, ·) is an |SZn

|−semigroup. As it is known, if monoid S has
a− 1 ∈ S, such that aa− 1 � a− 1a � 1 for a ∈ S, a is called an
unit element. Since Zn is a monoid with inverse and unit
elements, different results can be reached from other
semigroups. In [1], studies on domains and reduced rings
were given. In the following part, similar results are obtained
by different methods for semigroups.

Lemma 3. Let (Zn, ·) be semigroup of integers modulo n. If n

is p2 for prime number p, then
SZn

� 0, p, 2p, . . . , (p − 1)p . In addition, SZn
� 0  for

n � p.

Proof. Let n � p2 for prime number p. From Lemma 2, we
write a2 � 0 for an arbitrary element a of SZn

. )is means
that p2 ∣ a2. Since p is prime, we get p ∣ a2, and so, we obtain
p ∣ a. )en, a � pk for k ∈ Z. So, we get
SZn

� 0, p, 2p, . . . , (p − 1)p .
Let n � p be a prime number and a of SZn

. Using the
same procedure as in the above paragraph, we have p ∣ a.
Since p is a prime number, the only element that can be
divided by p is itself. So, we get a � p. )is result gives us
a � 0. So, we get SZn

� 0 . □

Theorem 1. Let (Zn, ·) be semigroup of integers modulo n.
(e following holds true:

(1) For n> 2, Zn is not a |SZn
|−idempotent monoid

(2) If n is either a prime p or p2, thenZn is a |SZn
|−regular

monoid

(3) n is either a prime p or p2 if and only if Zn is a
|SZn

|−nonzero divisor monoid
(4) If n � p is a prime number, thenZn is a |SZn

|−reduced
monoid

Proof

(1) Since SZ2
� 0 , we get Z2 − SZ2

� 1 . It is obvious
that 1 is an idempotent element. )erefore, Z2 is a
|SZ2

|−idempotent monoid.
Now, we consider monoid Zn for n> 2. Let a be an
unit element of SZn

. )en, axa � 0 for all x ∈ Zn.
Specially, aa− 1a � 0 is provided for a− 1 ∈ Zn. )is
result leads us to the contradiction a � 0. )is means
that there is no unit element in SZn

. So, every unit
element is element of Zn − SZn

. In this case, if 1≠ a is
an unit element in Zn − SZn

, a is also an idempotent
element. However, an unit element different from
the identity cannot be an idempotent element.
)erefore, we get a � 1. So, the assumption is in-
correct, and thus, Zn is not |SZn

|−idempotent
monoid.

(2) We recall that if gc d(n, a) � 1, then a ∈ Zn is an
unit element. Let n � p be a prime number.)en, we
get SZn

� 0  from Lemma 3. In this case, every el-
ement in Zn − SZn

� Zn − 0  is an unit element.
Since an unit element is also a regular element, Zn is
a |SZn

|−regular monoid.
Let n � p2 for prime number p. )en, we have SZn

�

0, p, 2p, . . . , (p − 1)p  from Lemma 3. )is means
that, if a ∈ Zn − SZn

, then gc d(n, a) � 1. So, a is an
unit element. Since an unit element is also a regular
element, Zn is a |SZn

|−regular monoid.
(3) Let n be either a prime p or p2. We showed that in

(2), if a ∈ Zn − SZn
, then a is an unit element. It is

well-known that, an unit element cannot be a zero
divisor in Zn. )erefore, there is no zero divisor in
Zn − SZn

. So, Zn is a |SZn
|−nonzero divisor monoid.

Conversely, let Zn be a |SZn
|−nonzero divisor

monoid. In this case, every element a in Zn − SZn
is a

nonzero divisor. )is means that a is an unit ele-
ment, and gc d(a, n) � 1. )ese results provide for
n � p any prime number. Assume that n is not prime
and n � pk for prime number p and for some
1< k< n. Since gc d(p, n)≠ 1, p is a nonunit ele-
ment. Hence, p must be in SZn

, and so, p3 � 0 from
Lemma 2. )erefore, we get n ∣ p3. Since n � pk, we
write pk ∣ p3. )is means that k ∣ p2, and so k ∣ p.
Since 1< k< n, we obtain k � p. So, we get n � p2.

(4) Let n � p be a prime number. We showed that in (2),
if a ∈ Zn − SZn

, then a is an unit element. If an � 0,
then 0 � ana− 1 � an− 1. If we continue in a similar
way, then we obtain a � 0 contradiction. )us, there
is no nilpotent element in Zn − SZn

. )is means that
Zn is a |SZn

|−reduced monoid. □
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Example 7. Consider the monoid (Z4, ·). For this monoid,
we get

SZ4
� 0, 2 ,

Z4 − SZ4
� 1, 3 .

(19)

From )eorem 1, Z4 is not a |SZ4
|−idempotent monoid.

Besides that ,Z4 is not |SZ4
|−regular and |SZ4

|−nonzero
divisor monoid. Indeed, if the elements of Z4 − SZ4

are
investigated, it is seen that 3 is not an idempotent element.
However, since 3 · 3 · 3 � 3 and 1 · 1 · 1 � 1, these two ele-
ments are regular elements. )en, Z4 is a |SZ4

|−regular
monoid. Also, since 1 and 3 are not zero divisors or nilpotent
elements, Z4 is a |SZ4

|−nonzero divisor and |SZ4
|−reduced

monoid.

Example 8. Consider the monoid (Z8, ·). Now, it turns out
that

SZ8
� 0, 4 ,

Z8 − SZ8
� 1, 2, 3, 5, 6, 7 .

(20)

From )eorem 1, Z8 is not a |SZ8
|−idempotent monoid.

Indeed, only element 1 is idempotent inZ8 − SZ8
. Also, since

2 is not regular element, Z8 is not a |SZ8
|−regular monoid.

On the other hand, since 2 is zero divisor and nilpotent,Z8 is
a not |SZ8

|−nonzero divisor or |SZ8
|−reduced monoid.

In [10], the relation between the regular semigroups
and their ideals was investigated and characterization of
the regular semigroups was given. We will now inves-
tigate the relation of |SS|−regular semigroups with their
ideals.

Lemma 4. Let I and J are the nonempty subsemigroups of
semigroup S. (en, the following properties are provided.

(1) SI ∩ SJ ⊆ SI∩J

(2) If I is left (right, both sided) ideal, then SS(I) is right
(left, both sided) ideal

(3) If I is ideal, then SI is ideal. Specifically, SS is ideal of S.
(4) If I and J are ideals, then SS(I).SS(J)⊆ SS(IJ)

(5) If I and J are ideals, then SI.SJ ⊆ SIJ

Proof. We will prove (1), (2), and (4). (3) and (5) are easily
seen; similarly,

(1) If a ∈ SI ∩ SJ, then aIa � aJa � 0. Since I∩ J⊆ I, we
get a(I∩ J)a⊆ aIa � 0. So, a ∈ SI∩J.

(2) Let I be a left ideal and a ∈ SS(I), s ∈ S. )en, we
write a ∈ S and aIa � 0. For arbitrary x ∈ I, since I is
a left ideal, we have sx ∈ I. So, the equation

(as)x(as) � (a(sx)a)s � 0s � 0 (21)

is satisfied. )is means that as ∈ SS(I), and so, SS(I)

is right ideal.

(4) Let ab ∈ SS(I).SS(J). )en, we get aIa � 0 and
bJb � 0. Since I is an ideal, we obtain bIJ⊆ I. So, we
get

ab(IJ)ab � a(bIJ)ab ⊆ (aIa)b � 0{ }. (22)

)is result means that ab ∈ SS(IJ). So,
SS(I).SS(J)⊆ SS(IJ) is provided. □

Theorem 2. Let S be a commutative semigroup. S is a
|SS|−regular semigroup if and only if (I∩ J) − SI∩J � IJ − SIJ

for every ideals I and J.

Proof. Let S be a |SS|−regular semigroup and
x ∈ (I∩ J) − SI∩J. )us, x ∈ I∩ J⊆ S and x ∉ SI∩J. Assume
that x ∈ SS. From Lemma 1 and Proposition 2, we get x � 0.
)is result contradicts with x ∉ SI∩J. )en, x ∈ S and x ∉ SS.
)is gives us x as a regular element. )erefore, there exists
y ∈ S, such that xyx � x. In this equation, since I and J are
ideals, we write x � x(yx) ∈ IJ. Also, since x is a regular
element and using Proposition 1, x ∉ SIJ is provided. )en,
we get x ∈ IJ − SIJ. From this expression, we obtain

(I∩ J) − SI∩J ⊆ IJ − SIJ. (23)

On the other hand, if x ∈ IJ − SIJ, then x is a regular
element because x ∈ IJ ⊆ S and x ∉ SIJ ⊆ SS. Also, since
IJ⊆ I∩ J, we have x ∈ I∩ J. In this expression, using
x ∉ SI∩J for regular element x, we obtain x ∈ (I∩ J) − SI∩J.
)erefore,

IJ − SIJ ⊆ (I∩ J) − SI∩J (24)

is provided. So, we get (I∩ J) − SI∩J � IJ − SIJ.
To prove the converse, let (I∩ J) − SI∩J � IJ − SIJ for

right ideal I and left ideal J, and let a ∈ S − SS. Let us
consider the ideal (a) � ax ∣ x ∈ S{ }∪ a{ } by generated a.
From the hypothesis, we get

(a) − S(a) � ((a)∩ S) − S(a)∩S � (a)S − S(a)S � aS − SaS.

(25)

Using a ∉ SS and S(a) ⊆ SS, we obtain a ∈ (a) − S(a).
)erefore, we have a ∈ aS − SaS. Also, we know that aS � Sa

for commutative semigroup S. From the hypothesis, we get

aS − SaS � (aS∩ Sa) − SaS∩Sa � aSSa − SaSSa � aS
2
a − SaS2a.

(26)

)is equation gives us a ∈ (aS2a − SaS2a). )is means
that a is a regular element such that a � aba for some
b ∈ S2 ⊆ S. So, S is a |SS|−regular semigroup. □

Theorem 3. Let S be a commutative semigroup. S is a
|SS|−regular semigroup if and only if I2 − SI2 � I − SI is
provided for each ideal I of S.

Proof. Let S be a |SS|−regular semigroup. For ideal I, using
)eorem 2, we get
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I
2

− SI2 � II − SII � (I∩ I) − SI∩I � I − SI. (27)

Conversely, let I2 − SI2 � I − SI for any ideal I. )en,
since I∩ J is an ideal, we get

(I∩ J) − SI∩J � (I∩ J)
2

− S(I∩ J)2 ⊆ (I∩ J)(I∩ J) − S(I∩ J)2 .

(28)

In above equation, using SI∩J · SI∩J ⊆ S(I∩ J)2 from
Lemma 4 (5) and IJ⊆ I∩ J, we obtain

(I∩ J) − SI∩J � (I∩ J)
2

− S(I∩ J)2 ⊆ IJ − SI∩J · SI∩J. (29)

So, using SIJ · SIJ ⊆ SIJ, we get

(I∩ J) − SI∩J ⊆ IJ − SIJ. (30)

Also, since IJ⊆ I∩ J,

IJ − SIJ ⊆ (I∩ J) − SI∩J (31)

is provided.)en, (I∩ J) − SI∩J � IJ − SIJ. From)eorem 2,
S is a |SS|−regular semigroup. □

Now, let us give the relation between |SS|−regular and
|SS|−reduced semigroups. )e following example shows that
the commutative property in this theorem is necessary.

Theorem 4. If S is a commutative |SS|−regular semigroup,
then S is a |SS|−reduced semigroup.

Proof. Let S be a commutative |SS|−regular semigroup, and
let a ∈ S − SS be a nilpotent element. In this case, there exists
n ∈ Z+, such that an � 0 and an− 1 ≠ 0. a is also a regular
element. Since S is commutative, there exists b ∈ S, such that
a2b � a. )us, we get

0 � a
n

� a
n− 2

a
2

� a
n− 2

a
2
b � a

n− 2
a � a

n− 1
. (32)

However, this result contradicts an− 1 ≠ 0. )erefore,
there is no nilpotent element in S − SS. So, S is a |SS|−reduced
semigroup. □

Example 9. Let the operation table of the semigroup S be
given as follows.

· 0 a b c d e

0 0 0 0 0 0 0

a 0 a 0 c 0 0

b 0 0 b 0 d 0

c 0 0 c 0 a 0

d 0 d 0 b 0 0

e 0 0 0 0 0 0

. (33)

Using the table, we get

SS � 0, e{ },

S − SS � a, b, c, d{ }.
(34)

Since c ∈ S − SS is not an idempotent element, S is not a
|SS|−idempotent semigroup. On the other hand, since
aaa � a, ccc � c, and c dc � c, every element in S − SS is
regular. So, S is a |SS|−regular semigroup. However, S is not a
|SS|−reduced semigroup because c and d are the nilpotent
elements. )erefore, S is not a |SS|−nonzero divisor either.
As shown in this example, in a noncommutative semigroup,
the above result is not valid.

Finally, we will adapt one of the well-known results in
semigroup theory to |SS|−regular semigroups. An element
x of a semigroup S is called inverse element if there exist at
least one y ∈ S, such that xyx � x and yxy � y. If there is an
inverse element with uniqueness for each element of the S

semigroup, the S semigroup is called the inverse semigroup.
As can be seen in [8], Proposition 2.6, S is an inverse
semigroup if and only if S is a regular and the idempotents of
S commute with each other. We reach similar results for
|SS|−regular semigroups, and a relation establishes between
|SS|−regular semigroups and inverse semigroups.

Lemma 5. Every elements of S − SS are inverse if and only if S

is a |SS|−regular semigroup.

Proof. If every elements of S − SS are inverse, then these
elements are also regular elements. It is clear that S is a
|SS|−regular semigroup.

Conversely, let S be a |SS|−regular semigroup.)en, each
element a ∈ S − SS is regular, and there exists b ∈ S, such that
aba � a.

(bab)a(bab) � (bab)(aba)b � (bab)ab � b(aba)b

� baban da(bab)a � (aba)ba � aba � a.

(35)

So, bab and a are inverse for each other. So, every el-
ements in S − SS are inverse elements. □

Theorem 5. Every elements of S − SS are inverse elements
with uniqueness if and only if S is a |SS|−regular semigroup
and the idempotents of S commute with each other.

Proof. From Lemma 5, every elements of S − SS are inverse
if and only if S is a |SS|−regular semigroup. As can be seen in
[8], Proposition 2.6, S is an inverse semigroup if and only if S

is a regular and the idempotents of S commute with each
other. From this property, all idempotent elements of S

commute with each other. □

4. Conclusions

We have shown that some properties of the source of the
semiprimeness defined as SS � a ∈ S ∣ aSa � 0{ } for a
semigroup S are given. Moreover, the relations of the source
of the semiprimeness with idempotent, regular, nilpotent,
and zero divisor elements, which are the basis of the new
semigroup structures, are investigated. Additionally, we
define the |SS|−idempotent semigroup, |SS|−regular semi-
group, |SS|− reduced semigroup, and |SS|−nonzero divisor
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semigroup structures. )us, the mentioned semigroups are
generalized. Also, we give examples for each semigroup. In
particular, the monoid (Zn, ·) is investigated and general-
izations are obtained. Furthermore, we adapt some well-
known results in semigroup theory to new semigroup
structures. )e source of primeness can be investigated in
the sense of this article in future works.
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